Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 1145 - 1175 | |
DOI | https://doi.org/10.1051/m2an/2025018 | |
Published online | 21 April 2025 |
- Y. Ai, P. Henning, M. Yadav and S. Yuan, Riemannian conjugate Sobolev gradients and their application to compute ground states of BECs. Preprint arXiv:2409.17302 (2024). [Google Scholar]
- R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross–Pitaevskii eigenvalue problem. Numer. Math. 148 (2021) 575–610. [CrossRef] [MathSciNet] [Google Scholar]
- R. Altmann, D. Peterseim and T. Stykel, Energy-adaptive Riemannian optimization on the Stiefel manifold. ESAIM Math. Model. Numer. Anal. 56 (2022) 1629–1653. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- R. Altmann, D. Peterseim and T. Stykel, Riemannian Newton methods for energy minimization problems of Kohn–Sham type. J. Sci. Comput. 101 (2024) 6. [CrossRef] [PubMed] [Google Scholar]
- X. Antoine and R. Duboscq, Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose–Einstein condensates. J. Comput. Phys. 258 (2014) 509–523. [CrossRef] [MathSciNet] [Google Scholar]
- X. Antoine, A. Levitt and Q. Tang, Efficient spectral computation of the stationary states of rotating Bose–Einstein condensates by preconditioned nonlinear conjugate gradient methods. J. Comput. Phys. 343 (2017) 92–109. [CrossRef] [MathSciNet] [Google Scholar]
- W. Bao, Mathematical models and numerical methods for Bose–Einstein condensation, in Proceedings of the International Congress for Mathematicians 2014. Preprint arXiv:1403.3884 (2014). [Google Scholar]
- W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6 (2013) 1–135. [CrossRef] [MathSciNet] [Google Scholar]
- W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25 (2004) 1674–1697. [CrossRef] [MathSciNet] [Google Scholar]
- W. Bao, H. Wang and P.A. Markowich, Ground, symmetric and central vortex states in rotating Bose–Einstein condensates. Commun. Math. Sci. 3 (2005) 57–88. [CrossRef] [MathSciNet] [Google Scholar]
- P. Bégout, The dual space of a complex Banach space restricted to the field of real numbers. Adv. Math. Sci. Appl. 31 (2022) 241–252. [MathSciNet] [Google Scholar]
- S.N. Bose, Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26 (1924) 178–181. [NASA ADS] [CrossRef] [Google Scholar]
- E. Cancès, SCF algorithms for HF electronic calculations, in Mathematical Models and Methods for ab initio Quantum Chemistry. Vol. 74 of Lecture Notes in Chem. Springer, Berlin (2000) 17–43. [CrossRef] [Google Scholar]
- E. Cancès and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem. 79 (2000) 82–90. [CrossRef] [Google Scholar]
- E. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree–Fock equations. M2AN Math. Model. Numer. Anal. 34 (2000) 749–774. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- E. Cancès, R. Chakir and Y. Maday, Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45 (2010) 90–117. [CrossRef] [MathSciNet] [Google Scholar]
- E. Cancès, G. Kemlin and A. Levitt, Convergence analysis of direct minimization and self-consistent iterations. SIAM J. Matrix Anal. Appl. 42 (2021) 243–274. [CrossRef] [MathSciNet] [Google Scholar]
- H. Chen, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics. Adv. Appl. Math. Mech. 3 (2011) 493–518. [Google Scholar]
- H. Chen, G. Dong, W. Liu and Z. Xie, Second-order flows for computing the ground states of rotating Bose–Einstein condensates. J. Comput. Phys. 475 (2023) 111872. [CrossRef] [Google Scholar]
- Z. Chen, J. Lu, Y. Lu and X. Zhang, Fully discretized Sobolev gradient flow for the Gross–Pitaevskii eigenvalue problem. Math. Comp. (2024). https://doi.org/10.1090/mcom/4032 [Google Scholar]
- Z. Chen, J. Lu, Y. Lu and X. Zhang, On the convergence of Sobolev gradient flow for the Gross–Pitaevskii eigenvalue problem. SIAM J. Numer. Anal. 62 (2024) 667–691. [CrossRef] [MathSciNet] [Google Scholar]
- I. Danaila and F. Hecht, A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose–Einstein condensates. J. Comput. Phys. 229 (2010) 6946–6960. [CrossRef] [MathSciNet] [Google Scholar]
- I. Danaila and P. Kazemi, A new Sobolev gradient method for direct minimization of the Gross–Pitaevskii energy with rotation. SIAM J. Sci. Comput. 32 (2010) 2447–2467. [CrossRef] [MathSciNet] [Google Scholar]
- I. Danaila and B. Protas, Computation of ground states of the Gross–Pitaevskii functional via Riemannian optimization. SIAM J. Sci. Comput. 39 (2017) B1102–B1129. [CrossRef] [Google Scholar]
- C.M. Dion and E. Cancès, Ground state of the time-independent Gross–Pitaevskii equation. Comput. Phys. Comm. 177 (2007) 787–798. [CrossRef] [MathSciNet] [Google Scholar]
- C. Döding and P. Henning, Uniform L∞-bounds for energy-conserving higher-order time integrators for the Gross–Pitaevskii equation with rotation. IMA J. Numer. Anal. 44 (2024) 2892–2935. [CrossRef] [MathSciNet] [Google Scholar]
- A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzber. Kgl. Preuss. Akad. Wiss. (1924) 261–267. [Google Scholar]
- C. Engström, S. Giani and L. Grubišić, Higher order composite DG approximations of Gross–Pitaevskii ground state: benchmark results and experiments. J. Comput. Appl. Math. 400 (2022) 113652. [CrossRef] [Google Scholar]
- E. Faou and T. Jézéquel, Convergence of a normalized gradient algorithm for computing ground states. IMA J. Numer. Anal. 38 (2018) 360–376. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hauck, Y. Liang and D. Peterseim, Positivity preserving finite element method for the Gross–Pitaevskii ground state: discrete uniqueness and global convergence. Preprint arXiv:2405.17090 (2024). [Google Scholar]
- P. Heid, B. Stamm and T.P. Wihler, Gradient flow finite element discretizations with energy-based adaptivity for the Gross–Pitaevskii equation. J. Comput. Phys. 436 (2021) 110165. [CrossRef] [Google Scholar]
- P. Henning, The dependency of spectral gaps on the convergence of the inverse iteration for a nonlinear eigenvector problem. Math. Models Methods Appl. Sci. 33 (2023) 1517–1544. [CrossRef] [MathSciNet] [Google Scholar]
- P. Henning and E. Jarlebring, The Gross–Pitaevskii equation and eigenvector nonlinearities: numerical methods and algorithms. SIAM Rev. (2025). [Google Scholar]
- P. Henning and A. Persson, On optimal convergence rates for discrete minimizers of the Gross–Pitaevskii energy in localized orthogonal decomposition spaces. Multiscale Model. Simul. 21 (2023) 993–1011. [CrossRef] [MathSciNet] [Google Scholar]
- P. Henning and D. Peterseim, Sobolev gradient flow for the Gross–Pitaevskii eigenvalue problem: global convergence and computational efficiency. SIAM J. Numer. Anal. 58 (2020) 1744–1772. [CrossRef] [MathSciNet] [Google Scholar]
- P. Henning and M. Yadav, On discrete ground states of rotating Bose–Einstein condensates. Math. Comput. 94 (2025) 1–32. [Google Scholar]
- P. Henning, A. Målqvist and D. Peterseim, Two-level discretization techniques for ground state computations of Bose–Einstein condensates. SIAM J. Numer. Anal. 52 (2014) 1525–1550. [CrossRef] [MathSciNet] [Google Scholar]
- E. Jarlebring, S. Kvaal and W. Michiels, An inverse iteration method for eigenvalue problems with eigenvector nonlinearities. SIAM J. Sci. Comput. 36 (2014) A1978–A2001. [CrossRef] [Google Scholar]
- P. Kazemi and M. Eckart, Minimizing the Gross–Pitaevskii energy functional with the Sobolev gradient – analytical and numerical results. Int. J. Comput. Methods 7 (2010) 453–475. [CrossRef] [Google Scholar]
- M. Matthews, B. Anderson, P. Haljan, D. Hall, C. Wieman and E. Cornell, Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83 (1999) 2498–2501. [CrossRef] [Google Scholar]
- J.W. Neuberger, Sobolev Gradients and Differential Equation. Vol. 1670 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1997). [CrossRef] [Google Scholar]
- A. Novruzi and B. Protas, An accelerated Sobolev gradient method for unconstrained optimization problems based on variable inner products. J. Comput. Appl. Math. 420 (2023) 114833. [CrossRef] [Google Scholar]
- L. Pitaevskii and S. Stringari, Bose–Einstein Condensation. Vol. 116 of International Series of Monographs on Physics. The Clarendon Press, Oxford University Press, Oxford (2003). [Google Scholar]
- M.H. Shih, A further generalization of the Ostrowski theorem in Banach spaces. Proc. Japan Acad. Ser. A Math. Sci. 57 (1981) 168–170. [MathSciNet] [Google Scholar]
- X. Wu, Z. Wen and W. Bao, A regularized Newton method for computing ground states of Bose–Einstein conden- sates. J. Sci. Comput. 73 (2017) 303–329. [CrossRef] [MathSciNet] [Google Scholar]
- F. Xu, H. Xie, M. Xie and M. Yue, A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration. BIT 61 (2021) 645–663. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Zhang, Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems. Commun. Math. Sci. 20 (2022) 377–403. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.