Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 999 - 1021 | |
DOI | https://doi.org/10.1051/m2an/2025014 | |
Published online | 02 April 2025 |
- G. Allaire, B. Bogosel and M. Godoy, Shape optimization of an imperfect interface: steady-state heat diffusion. J. Optim. Theory App. 191 (2021) 169–201. [Google Scholar]
- S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc Web page (2018). http://www.mcs.anl.gov/petsc. [Google Scholar]
- S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc users manual. Technical Report ANL-95/11 – Revision 3.11, Argonne National Laboratory (2019). [Google Scholar]
- R. Bey, J.-P. Lohéac and M. Moussaoui, Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation. Journal de Mathématiques Pures et Appliquées. Neuvième Série 78 (1999) 1043–1067. [Google Scholar]
- V. Bonnaillie-Noël, M. Dambrine, F. Hérau and G. Vial, On generalized Ventcel’s type boundary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal. 42 (2010) 931–945. [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [Google Scholar]
- D. Capatina, R. Luce, H. El-Otmany and N. Barrau, Nitsche’s extended finite element method for a fracture model in porous media. Appl. Anal. Int. J. 95 (2016) 2224–2242. [Google Scholar]
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). [Google Scholar]
- D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). [Google Scholar]
- M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3 (2003) 76–85. [Google Scholar]
- A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. [Google Scholar]
- A. Henrot and M. Pierre, Variation et optimisation de formes. Vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005). [Google Scholar]
- M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. [Google Scholar]
- T. Kashiwabara, C.M. Colciago, L. Dedè and A. Quarteroni, Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM J. Numer. Anal. 53 (2015) 105–126. [Google Scholar]
- J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilr¨aumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg 36 (1971) 9–15. [Google Scholar]
- A.D. Ventcel’, On boundary conditions for multi-dimensional diffusion processes. Theory Probab. App. 4 (1959) 164–177. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.