Open Access
Issue
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
Page(s) 955 - 997
DOI https://doi.org/10.1051/m2an/2025012
Published online 02 April 2025
  1. F. Alcrudo and F. Benkhaldoun, Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Comput. Fluids 30 (2001) 643–671. [Google Scholar]
  2. A. Aleksyuk, M. Malakhov and V. Belikov, The exact Riemann solver for the shallow water equations with a discontinuous bottom. J. Comput. Phys. 450 (2022) 110801. [Google Scholar]
  3. E. Audusse, F. Bouchut, M. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [Google Scholar]
  4. E. Audusse, C. Chalons and P. Ung, A simple well-balanced and positive numerical scheme for the shallow-water system. Commun. Math. Sci. 13 (2015) 1317–1332. [Google Scholar]
  5. R. Bernetti, V. Titarev and E. Toro, Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry. J. Comput. Phys. 227 (2008) 3212–3243. [MathSciNet] [Google Scholar]
  6. C. Berthon, Numerical approximations of the 10-moment gaussian closure. Math. Comput. 75 (2006) 1809–1832. [Google Scholar]
  7. C. Berthon and C. Chalons, A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations. Math. Comput. 85 (2016) 1281–1307. [Google Scholar]
  8. C. Berthon and V. Michel-Dansac, A simple fully well-balanced and entropy preserving scheme for the shallow-water equations. Appl. Math. Lett. 86 (2018) 284–290. [MathSciNet] [Google Scholar]
  9. C. Berthon, A. Crestetto and F. Foucher, A well-balanced finite volume scheme for a mixed hyperbolic/parabolic system to model chemotaxis. J. Sci. Comput. 67 (2016) 618–643. [Google Scholar]
  10. C. Berthon, M. M’Baye, M. Le and D. Seck, A well-defined moving steady states capturing Godunov-type scheme for shallow-water model. Int. J. Finite Vol. (2021) https://hal.science/hal-03192954/. [Google Scholar]
  11. A. Bihlo and S. MacLachlan, Well-balanced mesh-based and meshless schemes for the shallow-water equations. BIT Numer. Math. 58 (2018) 579–598. [Google Scholar]
  12. F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics. Birkh¨auser Verlag, Basel (2004). [Google Scholar]
  13. F. Bouchut and T.M. de Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: Math. Model. Numer. Anal. 42 (2008) 683–698. [Google Scholar]
  14. F. Bouchut and T.M. de Luna, A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48 (2010) 1733–1758. [Google Scholar]
  15. M. Castro Díaz, J. López-García and C. Parés, High-order exactly well-balanced numerical methods for shallow water systems. J. Comput. Phys. 246 (2013) 242–264. [MathSciNet] [Google Scholar]
  16. A. Chinnayya, A. Leroux and N. Seguin, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon. Int. J. Finite 1 (2004) 33. [Google Scholar]
  17. F. Coquel, J.-M. Hérard and K. Saleh, A splitting method for the isentropic Baer–Nunziato two-phase flow model, in ESAIM: Proceedings. Vol. 38. EDP Sciences (2012) 241–256. [Google Scholar]
  18. O. Delestre, C. Lucas, P. Ksinant, F. Darboux, C. Laguerre, T. Vo, F. James and S. Cordier, SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. Methods Fluids 72 (2013) 269–300. [Google Scholar]
  19. A. Duran, J. Vila and R. Baraille, Semi-implicit staggered mesh scheme for the multi-layer shallow water system. C. R. Acad. Sci. Paris 355 (2017) 1298–1306. [Google Scholar]
  20. U. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230 (2011) 5587–5609. [MathSciNet] [Google Scholar]
  21. G. Gallice, Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. C. R. Math. 334 (2002) 713–716. [Google Scholar]
  22. T. Gallouët, J. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479–513. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Gallouët, R. Herbin, J.C. Latché and N. Therme, Consistent internal energy based schemes for the compressible Euler equations, in Numerical Simulation in Physics and Engineering: Trends and Applications: Lecture Notes of the XVIII “Jacques-Louis Lions” Spanish-French School (2021) 119–154. [Google Scholar]
  24. L. Gastaldo, R. Herbin, J.-C. Latché and N. Therme, A MUSCL-type segregated–explicit staggered scheme for the Euler equations. Comput. Fluids 175 (2018) 91–110. [CrossRef] [MathSciNet] [Google Scholar]
  25. D. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J. Comput. Phys. 227 (2008) 3089–3113. [MathSciNet] [Google Scholar]
  26. N. Goutal and F. Maurel, Proceedings of the 2nd workshop on Dam-Break Wave Simulation. Department Laboratoire National d’Hydraulique, Groupe Hydraulique Fluviale (1997). [Google Scholar]
  27. E. Han and G. Warnecke, Exact Riemann solutions to shallow water equations. Q. Appl. Math. 72 (2014) 407–453. [Google Scholar]
  28. A. Harten and P.D. Lax, A random choice finite difference scheme for hyperbolic conservation laws. SIAM J. Numer. Anal. 18 (1981) 289–315. [Google Scholar]
  29. A. Harten, P. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. [CrossRef] [Google Scholar]
  30. R. Herbin, J. Latché and T. Nguyen, Consistent explicit staggered schemes for compressible flows part I: the barotropic Euler equations (2013) https://hal.science/hal-00821069/. [Google Scholar]
  31. A. Hiltebrand and S. Mishra, Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126 (2014) 103–151. [Google Scholar]
  32. A. Hiltebrand and S. Mishra, Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Netw. Heterog. Media 11 (2016) 145–162. [Google Scholar]
  33. A. Hiltebrand, S. Mishra and C. Parés, Entropy-stable space–time DG schemes for non-conservative hyperbolic systems. ESAIM: Math. Model. Numer. Anal. 52 (2018) 995–1022. [Google Scholar]
  34. J. Hou, Q. Liang, F. Simons and R. Hinkelmann, A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains. Comput. Fluids 82 (2013) 132–147. [Google Scholar]
  35. J. Koellermeier and E. Pimentel-García, Steady states and well-balanced schemes for shallow water moment equations with topography. Appl. Math. Comput. 427 (2022) 127166. [Google Scholar]
  36. P. LeFloch and M. Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime. J. Comput. Phys. 230 (2011) 7631–7660. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Li, R. Mu and H. Dong, A well-balanced discontinuous Galerkin method for the shallow water flows on erodible bottomimage 1. Comput. Math. App. 119 (2022) 13–20. [Google Scholar]
  38. Q. Liang and F. Marche, Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Res. 32 (2009) 873–884. [Google Scholar]
  39. V. Michel-Dansac, Development of high-order well-balanced schemes for geophysical flows. Ph.D. thesis, Université de Nantes, Faculté des sciences et des techniques (2016). [Google Scholar]
  40. V. Michel-Dansac, C. Berthon, S. Clain and F. Foucher, A well-balanced scheme for the shallow-water equations with topography. Comput. Math. App. 72 (2016) 568–593. [Google Scholar]
  41. V. Michel-Dansac, C. Berthon, S. Clain and F. Foucher, A well-balanced scheme for the shallow-water equations with topography or manning friction. J. Comput. Phys. 335 (2017) 115–154. [Google Scholar]
  42. C. Parés and E. Pimentel, The Riemann problem for the shallow water equations with discontinuous topography: the wet-dry case. J. Comput. Phys. 378 (2019) 344–365. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Prieto-Arranz, L. Ramirez, I. Couceiro, I. Colominas and X. Nogueira, A well-balanced sph-ale scheme for shallow water applications. J. Sci. Comput. 88 (2021) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
  44. V. Rusanov, The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys. 1 (1962) 304–320. [CrossRef] [Google Scholar]
  45. E. Toro, M. Spruce and W. Speares, Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4 (1994) 25–34. [NASA ADS] [CrossRef] [Google Scholar]
  46. Y. Xing, X. Zhang and C. Shu, Positivity-preserving high-order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Res. 33 (2010) 1476–1493. [CrossRef] [Google Scholar]
  47. Q. Zhang and W. Sheng, A note on the Riemann problem for shallow water equations with discontinuous topography. Appl. Math. Lett. 116 (2021) 107042. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you