Open Access
Issue
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
Page(s) 671 - 690
DOI https://doi.org/10.1051/m2an/2025001
Published online 14 February 2025
  1. A. Al Sayed, G. Carbou and S. Labbé, Asymptotic model for twisted bent ferromagnetic wires with electric current. Z. Angew. Math. Phys. 70 (2019) 1–15. [CrossRef] [Google Scholar]
  2. A.L. Bertozzi, A. Münch, M. Shearer and K. Zumbrun, Stability of compressive and undercompressive thin film travelling waves. Eur. J. Appl. Math. 12 (2001) 253–291. [CrossRef] [Google Scholar]
  3. G. Carbou, Stability of static walls for a three-dimensional model of ferromagnetic material. J. Math. Pures Appl. 93 (2010) 183–203. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Carbou, Domain walls dynamics for one dimensional models of ferromagnetic nanowires. Diff. Integral Equ. 26 (2013) 201–236. [Google Scholar]
  5. G. Carbou and S. Labbé, Stability for static walls in ferromagnetic nanowires. Discrete Continuous Dyn. Syst. – B 6 (2006) 273–290. [Google Scholar]
  6. G. Carbou and S. Labbé, Stabilization of walls for nano-wires of finite length. ESAIM Control Optim. 18 (2012) 1–21. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. G. Carbou and D. Sanchez, Stabilization of walls in notched ferromagnetic nanowires. hal-01810144 (2018). [Google Scholar]
  8. R. C^ote and R. Ignat, Asymptotic stability of precessing domain walls for the Landau–Lifshitz–Gilbert equation in a nanowire with Dzyaloshinskii–Moriya interaction. Comm. Math. Phys. 401 (2023) 2901–2957. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Fukami, M. Yamanouchi, S. Ikeda and H. Ohno, Depinning probability of a magnetic domain wall in nanowires by spin-polarized currents. Nat. Commun. 4 (2013) 2293. [CrossRef] [Google Scholar]
  10. R. Jizzini, Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field. J. Differ. Equ. 250 (2011) 3349–3361. [CrossRef] [Google Scholar]
  11. G. Malinowski, O. Boulle and M. Kl¨aui, Current-induced domain wall motion in nanoscale ferromagnetic elements. Mater. Sci. Eng. R 72 (2011) 159–187. [CrossRef] [Google Scholar]
  12. S.S.P. Parkin, M. Hayashi and L. Thomas, Magnetic domain-wall racetrack memory. Science 320 (2008) 190–194. [CrossRef] [PubMed] [Google Scholar]
  13. O.V. Pylypovskyi, D.D. Sheka, V.P. Kravchuk, K.V. Yershov, D. Makarov and Y. Gaididei, Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 6 (2016) 23316. [CrossRef] [Google Scholar]
  14. V. Roussier, Stability of radially symmetric travelling waves in reaction–diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 341–379. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Sanchez, Behaviour of the Landau–Lifschitz equation in a ferromagnetic wire. Math. Methods Appl. Sci. 32 (2009) 167–205. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.D. Sheka, V.P. Kravchuk, K.V. Yershov and Y. Gaididei, Torsion-induced effects in magnetic nanowires. Phys. Rev. B 92 (2015) 054417. [CrossRef] [Google Scholar]
  17. K. Takasao, Stability of travelling wave solutions for the Landau–Lifshitz equation. Hiroshima Math. J. 41 (2011) 367–388. [CrossRef] [MathSciNet] [Google Scholar]
  18. H.Y. Yuan and X.R. Wang, Domain wall pinning in notched nanowires. Phys. Rev. B 89 (2014) 054423. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you