Open Access
Issue
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
Page(s) 1213 - 1237
DOI https://doi.org/10.1051/m2an/2025029
Published online 25 April 2025
  1. A. Abdulle, Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales. Math. Comput. 81 (2012) 687–713. [Google Scholar]
  2. A. Abdulle and Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J. Comput. Phys. 231 (2012) 7014–7036. [Google Scholar]
  3. G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4 (2005) 790–812. [Google Scholar]
  4. R. Altmann, P. Henning and D. Peterseim, Numerical homogenization beyond scale separation. Acta Numer. 30 (2021) 1–86. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Araya, C. Harder, D. Paredes and F. Valentin, Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51 (2013) 3505–3531. [Google Scholar]
  6. T. Arbogast, G. Pencheva, M.F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6 (2007) 319–346. [Google Scholar]
  7. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM Math. Model. Numer. Anal. 19 (1985) 7–32. [CrossRef] [EDP Sciences] [Google Scholar]
  8. I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9 (2011) 373–406. [Google Scholar]
  9. I. Babuska and J.E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. [Google Scholar]
  10. I. Babuska, G. Caloz and J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945–981. [CrossRef] [MathSciNet] [Google Scholar]
  11. G.R. Barrenechea, A.T.A. Gomes and D. Paredes, A multiscale hybrid method. SIAM J. Sci. Comput. 46 (2024) A1628–A1657. [CrossRef] [Google Scholar]
  12. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013). [Google Scholar]
  13. S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. [Google Scholar]
  14. T. Chaumont-Frelet, A. Ern, S. Lemaire and F. Valentin, Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods. ESAIM Math. Model. Numer. Anal. 56 (2022) 261–285. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. H. Chen, P. Lu and X. Xu, A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Comput. Phys. 264 (2014) 133–151. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.G. Ciarlet, Basic error estimates for elliptic problems, in Finite Element Methods (Part 1). Vol. 2 of Handbook of Numerical Analysis. Elsevier (1991) 17–351. [Google Scholar]
  17. M. Cicuttin, A. Ern and S. Lemaire, A hybrid high-order method for highly oscillatory elliptic problems. Comput. Methods Appl. Math. 19 (2019) 723–748. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Cockburn and J. Gopalakrishnan, Error analysis of variable degree mixed methods for elliptic problems via hybridization. Math. Comput. 74 (2005) 1653–1677. [CrossRef] [Google Scholar]
  19. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
  20. B. Cockburn, O. Dubois, J. Gopalakrishnan and S. Tan, Multigrid for an HDG method. IMA J. Numer. Anal. 34 (2013) 1386–1425. [Google Scholar]
  21. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et applications. Springer, Heidelberg, New York, London (2012). [CrossRef] [Google Scholar]
  22. D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. [Google Scholar]
  23. Z. Dong, M. Hauck and R. Maier, An improved high-order method for elliptic multiscale problems. SIAM J. Numer. Anal. 61 (2023) 1918–1937. [CrossRef] [MathSciNet] [Google Scholar]
  24. Y. Efendiev, J. Galvis and T.Y. Hou, Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251 (2013) 116–135. [Google Scholar]
  25. Y. Efendiev, R. Lazarov and K. Shi, A multiscale HDG method for second order elliptic equations. Part I. Polynomial and homogenization-based multiscale spaces. SIAM J. Numer. Anal. 53 (2015) 342–369. [CrossRef] [MathSciNet] [Google Scholar]
  26. D. Elfverson, E.H. Georgoulis and A. Malqvist, An adaptive discontinuous Galerkin multiscale method for elliptic problems. Multiscale Model. Simul. 11 (2013) 747–765. [CrossRef] [MathSciNet] [Google Scholar]
  27. D. Elfverson, E.H. Georgoulis, A. Malqvist and D. Peterseim, Convergence of a discontinuous Galerkin multiscale method. SIAM J. Numer. Anal. 51 (2013) 3351–3372. [CrossRef] [MathSciNet] [Google Scholar]
  28. B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, in Stress Analysis. John Wiley & Sons (1965) 145–197. [Google Scholar]
  29. P. Freese, M. Hauck, T. Keil and D. Peterseim, A super-localized generalized finite element method. Numer. Math. 156 (2024) 205–235. [CrossRef] [MathSciNet] [Google Scholar]
  30. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin Heidelberg (1986). [Google Scholar]
  31. J. Gopalakrishnan, A Schwarz preconditioner for a hybridized mixed method. Comput. Meth. Appl. Math. 3 (2003) 116–134. [CrossRef] [Google Scholar]
  32. L. Grasedyck, I. Greff and S. Sauter, The AL basis for the solution of elliptic problems in heterogeneous media. Multiscale Model. Simul. 10 (2012) 245–258. [Google Scholar]
  33. M. Hauck and D. Peterseim, Super-localization of elliptic multiscale problems. Math. Comput. 92 (2023) 981–1003. [Google Scholar]
  34. C. Harder, D. Paredes and F. Valentin. A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients. J. Comput. Phys. 245 (2013) 107–130. [CrossRef] [MathSciNet] [Google Scholar]
  35. F. Hellman, P. Henning and A. Malqvist, Multiscale mixed finite elements. Discrete Contin. Dyn. Syst. Ser. S 9 (2016) 1269–1298. [CrossRef] [MathSciNet] [Google Scholar]
  36. P. Henning and D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11 (2013) 1149–1175. [Google Scholar]
  37. J.S. Hesthaven, S. Zhang and X. Zhu, High-order multiscale finite element method for elliptic problems. Multiscale Model. Simul. 12 (2014) 650–666. [CrossRef] [MathSciNet] [Google Scholar]
  38. C. Le Bris, F. Legoll and A. Lozinski, MsFEM a la Crouzeix-Raviart for highly oscillatory elliptic problems, in Partial Differential Equations: Theory, Control and Approximation. Springer, Dordrecht (2014) 265–294. [CrossRef] [Google Scholar]
  39. R. Li, P. Ming and F. Tang, An efficient high order heterogeneous multiscale method for elliptic problems. Multiscale Model. Simul. 10 (2012) 259–283. [CrossRef] [MathSciNet] [Google Scholar]
  40. P. Lu, A. Rupp and G. Kanschat, Homogeneous multigrid for HDG. IMA J. Numer. Anal. 42 (2022) 3135–3153. [CrossRef] [MathSciNet] [Google Scholar]
  41. P. Lu, A. Rupp and G. Kanschat, Analysis of injection operators in geometric multigrid solvers for HDG methods. SIAM J. Numer. Anal. 60 (2022) 2293–2317. [CrossRef] [MathSciNet] [Google Scholar]
  42. P. Lu, A. Rupp and G. Kanschat, Homogeneous multigrid for embedded discontinuous Galerkin methods. BIT Numer. Math. 62 (2022) 1029–1048. [CrossRef] [Google Scholar]
  43. P. Lu, A. Rupp and G. Kanschat, Two-level Schwarz methods for hybridizable discontinuous Galerkin methods. J. Sci. Comput. 95 (2023) 16. [CrossRef] [Google Scholar]
  44. C. Ma and R. Scheichl, Error estimates for discrete generalized FEMs with locally optimal spectral approximations. Math. Comput. 91 (2022) 2539–2569. [Google Scholar]
  45. R. Maier, Computational multiscale methods in unstructured heterogeneous media. Ph.D. thesis, University of Augsburg (2020). [Google Scholar]
  46. R. Maier, A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal. 59 (2021) 1067–1089. [CrossRef] [MathSciNet] [Google Scholar]
  47. A. Malqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. [CrossRef] [Google Scholar]
  48. A. Malqvist and D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposition. Vol. 5 of SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2020). [Google Scholar]
  49. A.L. Madureira and M. Sarkis, Hybrid localized spectral decomposition for multiscale problems. SIAM J. Numer. Anal. 59 (2021) 829–863. [CrossRef] [MathSciNet] [Google Scholar]
  50. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). [Google Scholar]
  51. J. Necas, Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics. Springer, Heidelberg (2012). Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Sarka Necasova and a contribution by Christian G. Simader. [CrossRef] [Google Scholar]
  52. H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59 (2017) 99–149. [Google Scholar]
  53. H. Owhadi and C. Scovel, Operator-adapted Wavelets, Fast Solvers, and Numerical Homogenization. Vol. 35 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2019). [Google Scholar]
  54. S. Tan, Iterative solvers for hybridized finite element methods. Ph.D. thesis, University of Florida (2009). [Google Scholar]
  55. W. Wang, J. Guzman and C.-W. Shu, The multiscale discontinuous Galerkin method for solving a class of second order elliptic problems with rough coefficients. Int. J. Numer. Anal. Model. 8 (2011) 28–47. [MathSciNet] [Google Scholar]
  56. M. Weymuth, Adaptive local basis for elliptic problems with -coefficients. Ph.D. thesis, University of Zurich (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you