Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1437 - 1470 | |
DOI | https://doi.org/10.1051/m2an/2025031 | |
Published online | 27 May 2025 |
- R. Anton, D. Cohen, S. Larsson and X. Wang, Full discretization of semilinear stochastic wave equations driven by multiplicative noise. SIAM J. Numer. Anal. 54 (2016) 1093–1119. [Google Scholar]
- A. Barth, A finite element method for martingale-driven stochastic partial differential equations. Commun. Stoch. Anal. 4 (2010) 355–375. [MathSciNet] [Google Scholar]
- A. Barth and F.E. Benth, The forward dynamics in energy markets – infinite-dimensional modelling and simulation. Stoch. Int. J. Probab. Stoch. Process. 86 (2014) 932–966. [CrossRef] [Google Scholar]
- A. Barth and A. Lang, Milstein approximation for advection-diffusion equations driven by multiplicative noncontinuous martingale noises. Appl. Math. Optim. 66 (2012) 387–413. [CrossRef] [MathSciNet] [Google Scholar]
- A. Barth and A. Lang, Multilevel Monte Carlo method with applications to stochastic partial differential equations. Int. J. Comput. Math. 89 (2012) 2479–2498. [CrossRef] [MathSciNet] [Google Scholar]
- A. Barth and A. Lang, Lp and almost sure convergence of a Milstein scheme for Stochastic Partial Differential Equations. Stoch. Process. App. 123 (2013) 1563–1587. [CrossRef] [Google Scholar]
- A. Barth and A. Stein, Approximation and simulation of infinite-dimensional Lévy processes. Stoch. Part. Differ. Equ. Anal. Comput. 6 (2018) 286–334. [Google Scholar]
- A. Barth and T. Stüwe, Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise. Math. Comput. Simul. 143 (2018) 215–225. [CrossRef] [Google Scholar]
- A. Barth, A. Lang and C. Schwab, Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT Numer. Math. 53 (2013) 3–27. [CrossRef] [Google Scholar]
- F.E. Benth and S. Koekebakker, Stochastic modeling of financial electricity contracts. Energy Econ. 30 (2008) 1116–1157. [CrossRef] [Google Scholar]
- A. Bonito and J. Pasciak, Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84 (2015) 2083–2110. [CrossRef] [Google Scholar]
- R. Carmona and M.R. Tehranchi, Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer Science & Business Media (2007). [Google Scholar]
- A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equation. Math. Comput. 78 (2009) 845–863. [Google Scholar]
- T. Dunst, E. Hausenblas and A. Prohl, Approximate Euler method for parabolic stochastic partial differential equations driven by space-time Lévy noise. SIAM J. Numer. Anal. 50 (2012) 2873–2896. [CrossRef] [MathSciNet] [Google Scholar]
- M.B. Giles, Multilevel Monte Carlo methods. Acta Numer. 24 (2015) 259–328. [CrossRef] [MathSciNet] [Google Scholar]
- M.B. Giles and C. Reisinger, Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance. SIAM J. Finan. Math. 3 (2012) 572–592. [CrossRef] [Google Scholar]
- M.B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation. Ann. Appl. Probab. 24 (2014) 1585–1620. [CrossRef] [MathSciNet] [Google Scholar]
- D.S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55 (2013) 601–667. [CrossRef] [MathSciNet] [Google Scholar]
- I. Gyöngy, S. Sabanis and D. Šiška, Convergence of tamed Euler schemes for a class of stochastic evolution equations. Stoch. Part. Differ. Equ. Anal. Comput. 4 (2016) 225–245. [Google Scholar]
- E. Hausenblas and J. Seidler, Stochastic convolutions driven by martingales: maximal inequalities and exponential integrability. Stoch. Anal. App. 26 (2007) 98–119. [CrossRef] [Google Scholar]
- A. Jentzen and P.E. Kloeden, The numerical approximation of stochastic partial differential equations. Milan J. Math. 77 (2009) 205–244. [CrossRef] [MathSciNet] [Google Scholar]
- A. Jentzen and M. Röckner, A Milstein scheme for SPDEs. Found. Comput. Math. 15 (2015) 313–362. [CrossRef] [MathSciNet] [Google Scholar]
- P.E. Kloeden, G.J. Lord, A. Neuenkirch and T. Shardlow, The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds. J. Comput. Appl. Math. 235 (2011) 1245–1260. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kovács, S. Larsson and F. Lindgren, On the backward Euler approximation of the stochastic Allen-Cahn equation. J. Appl. Probab. 52 (2015) 323–338. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kovács, F. Lindner and R.L. Schilling, Weak convergence of finite element approximations of linear stochastic evolution equations with additive Lévy noise. SIAM/ASA J. Uncertainty Quantif. 3 (2015) 1159–1199. [CrossRef] [MathSciNet] [Google Scholar]
- R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Springer (2014). [CrossRef] [Google Scholar]
- A. Lang, A note on the importance of weak convergence rates for SPDE approximations in multilevel Monte Carlo schemes, in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. Springer (2016) 489–505. [Google Scholar]
- C. Leonhard and A. Rößler, Enhancing the order of the Milstein scheme for Stochastic Partial Differential Equations with commutative noise. SIAM J. Numer. Anal. 56 (2018) 2585–2622. [CrossRef] [MathSciNet] [Google Scholar]
- D.H. Nguyen, N.N. Nguyen and G. Yin, Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model. J. Appl. Probab. 57 (2020) 613–636. [CrossRef] [MathSciNet] [Google Scholar]
- C. Pang and X. Wang, Antithetic multilevel Monte Carlo method for approximations of SDEs with non-globally Lipschitz continuous coefficients. Stoch. Process. App. 178 (2024) 104467 [Google Scholar]
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 2nd edition. Vol. 44. Springer Science & Business Media (1983). [Google Scholar]
- S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press (2007). [CrossRef] [Google Scholar]
- C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations. Springer (2007). [Google Scholar]
- A. Stein and A. Barth, Stochastic transport with Lévy noise fully discrete numerical approximation. Math. Comput. Simul. 227 (2025) 347–370. [CrossRef] [Google Scholar]
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25. Springer Science & Business Media (2007). [Google Scholar]
- C. von Hallern and A. Rößler, An analysis of the Milstein scheme for SPDEs without a commutative noise condition, in Monte Carlo and Quasi-Monte Carlo Methods, edited by B. Tuffin and P. L’Ecuyer. Springer International Publishing, Cham (2020) 503–521. [Google Scholar]
- C. von Hallern and A. Rößler, A derivative-free Milstein type approximation method for SPDEs covering the non-commutative noise case. Stoch. Part. Differ. Equ. Anal. Comput. 11 (2023) 1672–1731. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.