Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1471 - 1504 | |
DOI | https://doi.org/10.1051/m2an/2025020 | |
Published online | 04 June 2025 |
- G. Bauer, V. Gravemeier and W.A. Wall, A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems. Comput. Methods Appl. Mech. Eng. 223 (2012) 199–210. [CrossRef] [Google Scholar]
- Y.-Z. Chen and L.-C. Wu, Second Order Elliptic Equations and Elliptic Systems. Vol. 174. American Mathematical Society (1998). [CrossRef] [Google Scholar]
- C.I. Correa, G.N. Gatica and R. Ruiz-Baier, New mixed finite element methods for the coupled Stokes and Poisson–Nernst–Planck equations in Banach spaces. ESAIM: Math. Model. Numer. Anal. 57 (2023) 1511–1551. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- C.I. Correa, G.N. Gatica, E. Henríquez, R. Ruiz-Baier and M. Solano, Banach spaces-based mixed finite element methods for the coupled Navier–Stokes and Poisson–Nernst–Planck equations. Calcolo 61 (2024) 31. [CrossRef] [Google Scholar]
- M. Dehghan, Z. Gharibi and R. Ruiz-Baier, Optimal error estimates of coupled and divergence-free virtual element methods for the Poisson–Nernst–Planck/Navier–Stokes equations and applications in electrochemical systems. J. Sci. Comput. 94 (2023) 72. [CrossRef] [Google Scholar]
- C. Deng, J. Zhao and S. Cui, Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices. J. Math. Anal. Appl. 377 (2011) 392–405. [CrossRef] [MathSciNet] [Google Scholar]
- J. Ding, C. Wang and S. Zhou, Optimal rate convergence analysis of a second order numerical scheme for the Poisson–Nernst–Planck system. Numer. Math. Theor. Meth. Appl. 12 (2019) 607–626. [CrossRef] [Google Scholar]
- L. Dong, D. He, Y. Qin and Z. Zhang, A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck (PNP) system. J. Comput. Appl. Math. 444 (2024) 115784. [CrossRef] [Google Scholar]
- G. Fu and Z. Xu, High-order space–time finite element methods for the Poisson–Nernst–Planck equations: Positivity and unconditional energy stability. Comput. Methods Appl. Mech. Eng. 395 (2022) 115031. [CrossRef] [Google Scholar]
- H. Gao and D. He, Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72 (2017) 1269–1289. [CrossRef] [MathSciNet] [Google Scholar]
- J. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73 (2004) 1719–1737. [Google Scholar]
- Y. He and H. Chen, Efficiently high-order time-stepping R-GSAV schemes for the Navier–Stokes–Poisson–Nernst–Planck equations. Phys. D 466 (2024) 134233. [CrossRef] [Google Scholar]
- M. He and P. Sun, Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling. J. Comput. Appl. Math. 341 (2018) 61–79. [CrossRef] [MathSciNet] [Google Scholar]
- M. He and P. Sun, Mixed finite element method for modified Poisson–Nernst–Planck/Navier–Stokes equations. J. Sci. Comput. 87 (2021) 1–33. [CrossRef] [Google Scholar]
- D. He, K. Pan and X. Yue, A positivity preserving and free energy dissipative difference scheme for the Poisson–Nernst–Planck system. J. Sci. Comput. 81 (2019) 436–458. [CrossRef] [MathSciNet] [Google Scholar]
- J. Hu and X. Huang, A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations. Numer. Math. 145 (2020) 77–115. [CrossRef] [MathSciNet] [Google Scholar]
- C. Jourdana, A. Jüngel and N. Zamponi, Three-species drift-diffusion models for memristors. Math. Models Meth. Appl. Sci. 33 (2023) 2113–2156. [CrossRef] [Google Scholar]
- M. Li and Z. Li, Error estimates for the finite element method of the Navier–Stokes–Poisson–Nernst–Planck equations. Appl. Numer. Math. 197 (2024) 186–209. [CrossRef] [MathSciNet] [Google Scholar]
- X. Li, J. Shen and Z. Liu, New SAV-pressure correction methods for the Navier–Stokes equations: stability and error analysis. Math. Comput. 91 (2022) 141–167. [Google Scholar]
- X. Liu and C. Xu, Efficient time-stepping/spectral methods for the Navier–Stokes–Nernst–Planck–Poisson equations. Commun. Comput. Phys. 21 (2017) 1408–1428. [CrossRef] [MathSciNet] [Google Scholar]
- C. Liu, C. Wang, S. Wise, X. Yue and S. Zhou, A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comput. 90 (2021) 2071–2106. [CrossRef] [Google Scholar]
- C. Liu, C. Wang, S.M. Wise, X. Yue and S. Zhou, A second order accurate, positivity preserving numerical method for the Poisson–Nernst–Planck System and its convergence analysis. J. Sci. Comput. 97 (2023) 23. [CrossRef] [Google Scholar]
- M.S. Metti, J. Xu and C. Liu, Energetically stable discretizations for charge transport and electrokinetic models. J. Comput. Phys. 306 (2016) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
- M. Pan, S. Liu, W. Zhu, F. Jiao and D. He, A linear, second-order accurate, positivity-preserving and unconditionally energy stable scheme for the Navier–Stokes–Poisson–Nernst–Planck system. Commun. Nonlinear Sci. Numer. Simul. 131 (2024) 107873. [CrossRef] [Google Scholar]
- A. Prohl and M. Schmuck, Convergent finite element discretizations of the Navier–Stokes–Nernst–Planck–Poisson system. ESAIM: Math. Model. Numer. Anal. 44 (2010) 531–571. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Schmuck, Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Model Meth. Appl. Sci. 19 (2009) 993–1014. [CrossRef] [Google Scholar]
- R. Shen and Y. Wang, Stability of the nonconstant stationary solution to the Poisson–Nernst–Planck–Navier–Stokes equations. Nonlinear Anal. Real World Appl. 67 (2022) 103582. [CrossRef] [Google Scholar]
- J. Shen and J. Xu, Unconditionally positivity preserving and energy dissipative schemes for Poisson–Nernst–Planck equations. Numer. Math. 148 (2021) 671–697. [CrossRef] [MathSciNet] [Google Scholar]
- J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Vol. 41. Springer Science & Business Media (2011). [Google Scholar]
- R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis. Vol. 66. Society for Industrial and Applied Mathematics (1995). [CrossRef] [Google Scholar]
- R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. Vol. 343. American Mathematical Society (2001). [Google Scholar]
- Y. Wang, C. Liu and Z. Tan, A generalized Poisson–Nernst–Planck–Navier–Stokes model on the fluid with the crowded charged particles: Derivation and its well-posedness. SIAM J. Math. Anal. 48 (2016) 3191–3235. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang, L. Jiang and C. Liu, Quasi-neutral limit and the boundary layer problem of Planck–Nernst–Poisson–Navier–Stokes equations for electro-hydrodynamics. J. Differ. Equ. 267 (2019) 3475–3523. [CrossRef] [Google Scholar]
- Z. Yu, Q. Cheng, J. Shen and C. Wang, A positivity preserving scheme for Poisson–Nernst–Planck–Navier–Stokes equations and its error analysis. Preprint arXiv:2311.17349 (2023). [Google Scholar]
- X. Zhou and C. Xu, Efficient time-stepping schemes for the Navier–Stokes–Nernst–Planck–Poisson equations. Comput. Phys. Commun. 289 (2023) 108763. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.