Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1239 - 1270 | |
DOI | https://doi.org/10.1051/m2an/2025022 | |
Published online | 14 May 2025 |
- S. Angenent, S. Haker and A. Tannenbaum, Minimizing flows for the Monge–Kantorovich problem. SIAM J. Math. Anal. 35 (2003) 61–97. [CrossRef] [MathSciNet] [Google Scholar]
- A. Baradat and H. Lavenant, Regularized unbalanced optimal transport as entropy minimization with respect to branching Brownian motion. Preprint arXiv:2111.01666 (2021). [Google Scholar]
- J.-D. Benamou, A domain decomposition method for the polar factorization of vector-valued mappings. SIAM J. Numer. Anal. 32 (1994) 1808–1838. [Google Scholar]
- J.-D. Benamou, B.D. Froese and A.M. Oberman, Numerical solution of the optimal transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260 (2014) 107–126. [CrossRef] [MathSciNet] [Google Scholar]
- R.J. Berman, The Sinkhorn algorithm, parabolic optimal transport and geometric Monge–Ampère equations. Numer. Math. 145 (2020) 771–836. [CrossRef] [MathSciNet] [Google Scholar]
- V.I. Bogachev, Measure Theory. Mathematics and Statistics. Springer Berlin, Heidelberg (2007). [Google Scholar]
- M. Bonafini and B. Schmitzer, Domain decomposition for entropy regularized optimal transport. Numer. Math. 149 (2021) 819–870. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bonafini, I. Medina and B. Schmitzer, Asymptotic analysis of domain decomposition for optimal transport (arXiv v1 version). Preprint arXiv:2106.08084v1 (2021). [Google Scholar]
- M. Bonafini, I. Medina and B. Schmitzer, Asymptotic analysis of domain decomposition for optimal transport. Numer. Math. 153 (2023) 451–492. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375–417. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized boussinesq equations. J. Nonlinear Sci. 19 (2009) 547–570. [CrossRef] [MathSciNet] [Google Scholar]
- C. Cancès, D. Matthes, I. Medina and B. Schmitzer, Continuum of coupled wasserstein gradient flows. Preprint arXiv:2411.13969 (2024). [Google Scholar]
- G. Carlier and M. Laborde, A differential approach to the multi-marginal Schrödinger system. SIAM J. Math. Anal. 52 (2020) 709–717. [CrossRef] [MathSciNet] [Google Scholar]
- G. Carlier, V. Duval, G. Peyré and B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal. 49 (2017) 1385–1418. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Chen, T.T. Georgiou and M. Pavon, On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory App. 169 (2016) 671–691. [CrossRef] [Google Scholar]
- R. Cominetti and J.S. Martin, Asymptotic analysis of the exponential penalty trajectory in linear programming. Math. Program. 67 (1992) 169–187. [Google Scholar]
- M. Cuturi, Sinkhorn distances: lightspeed computation of optimal transportation distances, in Advances in Neural Information Processing Systems 26 (NIPS 2013) (2013) 2292–2300. [Google Scholar]
- B. Dezs˜o, A. Jüttner and P. Kovács, Lemon – an open source C++ graph template library. Electron. Theor. Comput. Sci. 264 (2011) 23–45. [CrossRef] [Google Scholar]
- J. Feydy, Geometric data analysis, beyond convolutions. Ph.D. thesis, Universit’e Paris-Saclay (2020). [Google Scholar]
- J. Feydy, T. Séjourné, F.-X. Vialard, S.-I. Amari, A. Trouve and G. Peyré, Interpolating between optimal transport and MMD using Sinkhorn divergences, in The 22nd International Conference on Artificial Intelligence and Statistics (2019) 2681–2690. [Google Scholar]
- J. Feydy, A. Glaunès, B. Charlier and M. Bronstein, Fast geometric learning with symbolic matrices, in Advances in Neural Information Processing Systems, edited by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan and H. Lin. Vol. 33. Curran Associates, Inc. (2020) 14448–14462. [Google Scholar]
- P. Ghosal, M. Nutz and E. Bernton, Stability of entropic optimal transport and Schrödinger bridges. J. Funct. Anal. 283 (2022) 109622. [CrossRef] [Google Scholar]
- M. Harris, Optimizing parallel reduction in cuda. Nvidia Dev. Technol. Web. 2 (2007) 70. [Google Scholar]
- IBM ILOG CPLEX, V12.1: User’s manual for CPLEX. Int. Bus. Mach. Corp. 46 (2009) 157. [Google Scholar]
- J. Kitagawa, Q. Mérigot and B. Thibert, Convergence of a Newton algorithm for semi-discrete optimal transport. J. Eur. Math. Soc. 21 (2019) 2603–2651. [CrossRef] [MathSciNet] [Google Scholar]
- H. Lavenant, S. Zhang, Y.-H. Kim and G. Schiebinger, Towards a mathematical theory of trajectory inference. Preprint arXiv:2102.09204 (2021). [Google Scholar]
- C. Léonard, From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262 (2012) 1879–1920. [CrossRef] [MathSciNet] [Google Scholar]
- B. Lévy, A numerical algorithm for L2 semi-discrete optimal transport in 3D. ESAIM Math. Model. Numer. Anal. 49 (2015) 1693–1715. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Q. Mérigot, A multiscale approach to optimal transport. Comput. Graphics Forum 30 (2011) 1583–1592. [CrossRef] [Google Scholar]
- L. Perron and V. Furnon, OR-Tools. https://developers.google.com/optimization/ (2023). [Google Scholar]
- G. Peyré and M. Cuturi, Computational optimal transport. Found. Trends Mach. Learn. 11 (2019) 355–607. [CrossRef] [Google Scholar]
- F. Santambrogio, Optimal Transport for Applied Mathematicians. Vol. 87 of Progress in Nonlinear Differential Equations and Their Applications. Birkh¨auser Boston (2015). [CrossRef] [Google Scholar]
- B. Schmitzer and C. Schnörr, A hierarchical approach to optimal transport, in Scale Space and Variational Methods (SSVM 2013) (2013) 452–464. [Google Scholar]
- J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du and L. Guibas, Convolutional Wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graphics (Proc. of SIGGRAPH 2015) 34 (2015) 66:1–66:11. [Google Scholar]
- C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003). [CrossRef] [Google Scholar]
- C. Villani, Optimal Transport: Old and New. Vol. 338 of Grundlehren der mathematischen Wissenschaften. Springer (2009). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.