Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1271 - 1299
DOI https://doi.org/10.1051/m2an/2025026
Published online 14 May 2025
  1. H. Babovsky, Die Boltzmann-Gleichung: Modellbildung-Numerik-Anwendungen. Springer Vieweg + Teubner (1998). https://doi.org/10.1007/978-3-663-12034-6. [CrossRef] [Google Scholar]
  2. P. Bachmann, Die analytische Zahlentheorie. Teubner (1923). [Google Scholar]
  3. M. Banda, A. Klar, L. Pareschi, and M. Seaid, Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations. Math. Comput. 77 (2008) 943–965. https://doi.org/10.1090/S0025-5718-07-02034-0. [Google Scholar]
  4. C. Bardos, F. Golse, and C.D. Levermore, Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46 (1993) 667–753. https://doi.org/10.1002/cpa.3160460503. [CrossRef] [Google Scholar]
  5. S. Bartels, Numerical methods for nonlinear partial differential equations, vol. 47. Springer Cham (2015). https://doi.org/10.1007/978-3-319-13797-1. [CrossRef] [Google Scholar]
  6. T. Bellotti, Truncation errors and modified equations for the lattice Boltzmann method via the corresponding finite difference schemes. ESAIM Math. Model. Num. Anal. 57 (2023) 1225–1255. https://doi.org/10.1051/m2an/2023008. [CrossRef] [EDP Sciences] [Google Scholar]
  7. T. Bellotti, B. Graille, and M. Massot, Finite difference formulation of any lattice Boltzmann scheme. Numer. Math. 152 (2022) 1–40. https://doi.org/10.1007/s00211-022-01302-2. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. L. Bhatnagar, E.P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. E 94 (1954) 511–525. https://doi.org/10.1103/PhysRev.94.511. [CrossRef] [Google Scholar]
  9. B.M. Boghosian, J. Yepez, P.V. Coveney, and A. Wagner, Entropic lattice Boltzmann methods. Proc. R. Soc. A 457 (2007) 717–766. https://doi.org/10.1098/rspa.2000.0689. [Google Scholar]
  10. F. Bouchut, F.R. Guarguaglini, and R. Natalini, Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49 (2000) 723–749. https://doi.org/10.1512/iumj.2000.49.1811. [CrossRef] [Google Scholar]
  11. F. Caetano, F. Dubois, and B. Graille, A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme. Discrete Contin. Dyn. Syst. – S 17 (2024) 3129–3154. https://doi.org/10.3934/dcdss.2023072. [CrossRef] [Google Scholar]
  12. A. Caiazzo, M. Junk, and M. Rheinl¨ander, Comparison of analysis techniques for the lattice Boltzmann method. Comput. Math. Appl., 58 (2009) 883–897. https://doi.org/10.1016/j.camwa.2009.02.011. [CrossRef] [MathSciNet] [Google Scholar]
  13. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press (2022). [Google Scholar]
  14. D. Dapelo, S. Simonis, M.J. Krause, and J. Bridgeman, Lattice-Boltzmann coupled models for advection-diffusion flow on a wide range of Péclet numbers. J. Comput. Sci. 51 (2021) 101363. https://doi.org/10.1016/j.jocs.2021.101363. [Google Scholar]
  15. P.J. Dellar, An interpretation and derivation of the lattice Boltzmann method using Strang splitting. Comput. Math. Appl. 65 (2013) 129–141. https://doi.org/10.1016/j.camwa.2011.08.047. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Dubois, Equivalent partial differential equations of a lattice Boltzmann scheme. Comput. Math. Appl. 55 (2008) 1441–1449. https://doi.org/10.1016/j.camwa.2007.08.003. [CrossRef] [MathSciNet] [Google Scholar]
  17. B.H. Elton, C.D. Levermore, and G.H. Rodrigue, Convergence of Convective-Diffusive Lattice Boltzmann Methods. SIAM J. Numer. Anal. 32 (1995) 1327–1354. https://doi.org/10.1137/0732062. [CrossRef] [MathSciNet] [Google Scholar]
  18. G.B. Folland, Advanced Calculus. Pearson Education (US) (2001). [Google Scholar]
  19. A.N. Gorban, Hilbert’s sixth problem: the endless road to rigour. Philos. Trans. A Math. Phys. Eng. Sci. 376 (2018) 20170238. https://doi.org/10.1098/rsta.2017.0238. [Google Scholar]
  20. Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (2002) 046308. https://doi.org/10.1103/PhysRevE.65.046308. [CrossRef] [Google Scholar]
  21. Z. Guo, J. Li, and K. Xu, Unified preserving properties of kinetic schemes. Phys. Rev. E 107 (2023) 025301. https://doi.org/10.1103/PhysRevE.107.025301. [Google Scholar]
  22. M. Haussmann, P. Reinshaus, S. Simonis, H. Nirschl, and M.J. Krause, Fluid-structure interaction simulation of a coriolis mass flowmeter using a lattice Boltzmann method. Fluids 6 (2021) 167. https://doi.org/10.3390/ fluids6040167. [Google Scholar]
  23. X. He and L.-S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 (1997) 6811–6817. https://doi.org/10.1103/PhysRevE.56.6811. [Google Scholar]
  24. S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Mat. Univ. Parma. 3 (2012) 177–216. https://ins.sjtu.edu.cn/people/shijin/PS/AP.pdf. [Google Scholar]
  25. M. Junk, A finite difference interpretation of the lattice Boltzmann method. Numer. Methods Partial Differ. Equ. 17 (2001) 383–402. https://doi.org/10.1002/num.1018. [CrossRef] [Google Scholar]
  26. M. Junk and A. Klar, Discretizations for the incompressible Navier-Stokes equations based on the Lattice Boltzmann method. SIAM J. Sci. Comput. 22 (2000) 1–19. https://doi.org/10.1137/S1064827599357188. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Junk and W.-A. Yong, Weighted L2-stability of the Lattice Boltzmann method. SIAM J. Numer. Anal. 47 (2009) 1651–1665. https://doi.org/10.1137/060675216. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Junk, A. Klar, and L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210 (2005) 676–704. https://doi.org/10.1016/j.jcp.2005.05.003. [CrossRef] [MathSciNet] [Google Scholar]
  29. I.V. Karlin, A. Ferrante, and H.C. Öttinger, Perfect entropy functions of the Lattice Boltzmann method. Europhys. Lett. 47 (1999) 182–188. https://doi.org/10.1209/epl/i1999-00370-1. [CrossRef] [Google Scholar]
  30. A. Klar, Relaxation scheme for a Lattice–Boltzmann-type discrete velocity model and numerical Navier–Stokes limit. J. Comput. Phys. 148 (1999) 416–432. https://doi.org/10.1006/jcph.1998.6123. [CrossRef] [MathSciNet] [Google Scholar]
  31. M.J. Krause, Fluid flow simulation and optimisation with Lattice Boltzmann methods on high performance computers – application to the human respiratory system. Doctoral thesis, Karlsruhe Institute of Technology (KIT) (2010). https://doi.org/10.5445/IR/1000019768; https://publikationen.bibliothek.kit.edu/1000019768. [Google Scholar]
  32. M.J. Krause, A. Kummerl¨ander, S.J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens, M. Gaedtke, N. Hafen, A. Mink, R. Trunk, J.E. Marquardt, M.-L. Maier, M. Haussmann, and S. Simonis, OpenLB – Open source lattice Boltzmann code. Comput. Math. Appl. 81 (2021) 258–288, 2021. https://doi.org/10.1016/j.camwa.2020.04.033. [CrossRef] [MathSciNet] [Google Scholar]
  33. E. Kummer and S. Simonis, Nonuniqueness of lattice Boltzmann schemes derived from finite difference methods. Ex. Counterex. 7 (2025) 100171. https://doi.org/10.1016/j.exco.2024.100171. [CrossRef] [Google Scholar]
  34. A. Kummerl¨ander, S. Avis, H. Kusumaatmaja, F. Bukreev, D. Dapelo, S. Großmann, N. Hafen, C. Holeksa, A. Husfeldt, J. Jeßberger, L. Kronberg, J. Marquardt, J. Mödl, J. Nguyen, T. Pertzel, S. Simonis, L. Springmann, N. Suntoyo, D. Teutscher, M. Zhong, and M. Krause, OpenLB Release 1.5: Open source lattice Boltzmann code, November (2022). https://doi.org/10.5281/zenodo.6469606. [Google Scholar]
  35. P. Lallemand and L.-S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (2000) 6546–6562. https://doi.org/10.1103/PhysRevE.61.6546. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. P. Lallemand, L.-S. Luo, M. Krafczyk, and W.-A. Yong, The lattice Boltzmann method for nearly incompressible flows. J. Comput. Phys. 431 (2021) 109713. https://doi.org/10.1016/j.jcp.2020.109713. [Google Scholar]
  37. E. Landau, Handbuch der Lehre von der Verteilung der Primazahlen. BG Teubner (1909). [Google Scholar]
  38. P.D. Lax and R.D. Richtmyer, Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9 (1956) 267–293. https://doi.org/10.1002/cpa.3160090206. [CrossRef] [Google Scholar]
  39. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934) 193–248. https://doi.org/10.1007/BF02547354. [Google Scholar]
  40. R.J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM (2007). https://doi.org/10.1137/1.9780898717839. [CrossRef] [Google Scholar]
  41. P.-A. Masset and G. Wissocq, Linear hydrodynamics and stability of the discrete velocity Boltzmann equations. J. Fluid Mech. 897 (2020) A29. https://doi.org/10.1017/jfm.2020.374. [CrossRef] [Google Scholar]
  42. A. Mink, K. Schediwy, C. Posten, H. Nirschl, S. Simonis, and M.J. Krause, Comprehensive computational model for coupled fluid flow, mass transfer, and light supply in tubular photobioreactors equipped with glass sponges. Energies 15 (2022) 7671. https://doi.org/10.3390/en15207671. [Google Scholar]
  43. S. Mischler, Uniqueness for the BGK-equation in RN and rate of convergence for a semi-discrete scheme. Diff. Integral Equ. 9 (1996) 1119–1138. https://doi.org/10.57262/die/1367871533. [Google Scholar]
  44. J.A. Murdock, Perturbations: Theory and Methods. SIAM (1999). [CrossRef] [Google Scholar]
  45. B. Perthame, Global existence to the BGK model of Boltzmann equation. J. Diff. Equ. 82 (1989) 191–205. https://doi.org/10.1016/0022-0396(89)90173-3. [CrossRef] [Google Scholar]
  46. B. Perthame and M. Pulvirenti, Weighted L bounds and uniqueness for the Boltzmann BGK model. Arch. Ration. Mechan. Anal. 125 (1993) 289–295. https://doi.org/10.1007/BF00383223. [CrossRef] [Google Scholar]
  47. L. Saint-Raymond, Discrete time Navier-Stokes limit for the BGK Boltzmann equation. Commun. Partial Differ. Equ. 27 (2002) 149–184. https://doi.org/10.1081/PDE-120002785. [CrossRef] [Google Scholar]
  48. L. Saint-Raymond, From the BGK model to the Navier-Stokes equations. Ann. Sci. Ec. Norm. Super. 36 (2023) 271–317. https://doi.org/10.1016/S0012-9593(03)00010-7. [Google Scholar]
  49. S. Simonis, Lattice Boltzmann methods for partial differential equations. Doctoral thesis, Karlsruhe Institute of Technology (KIT) (2023). https://doi.org/10.5445/IR/1000161726; https://publikationen.bibliothek.kit.edu/1000161726. [Google Scholar]
  50. S. Simonis, N. Hafen, J. Jeßberger, D. Dapelo, G. Th¨ater, M. J. Krause, Homogenized lattice Boltzmann methods for fluid flow through porous media – Part I: Kinetic model derivation. ESAIM: M2AN 59 (2025) 789–813, 2025. https://doi.org/10.1051/m2an/2025005. [CrossRef] [EDP Sciences] [Google Scholar]
  51. S. Simonis and M. J. Krause, Forschungsnahe Lehre unter Pandemiebedingungen. Mitt. Deutsche Math. Ver. 30 (2022) 43–45. https://doi.org/10.1515/dmvm-2022-0015. [Google Scholar]
  52. S. Simonis and S. Mishra, Computing statistical Navier–Stokes solutions, in Hyperbolic balance laws: interplay between scales and randomness (Oberwolfach Report 21), Edited by R. Abgrall, M. Garavello, M. Lukáčová-Medvid’ová, and K. Trivisa (2024) 634–637. https://doi.org/10.4171/OWR/2024/10. [Google Scholar]
  53. S. Simonis, M. Frank, and M.J. Krause, On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations. Philos. Trans. R. Soc. London. Ser. A 378 (2020) 20190400. https://doi.org/10.1098/rsta.2019.0400. [Google Scholar]
  54. S. Simonis, M. Haussmann, L. Kronberg, W. Dörfler, and M.J. Krause, Linear and brute force stability of orthogonal moment multiple-relaxation-time lattice Boltzmann methods applied to homogeneous isotropic turbulence. Philos. Trans. R. Soc. London. Ser. A 379 (2021) 20200405. https://doi.org/10.1098/rsta.2020.0405. [Google Scholar]
  55. S. Simonis, D. Oberle, M. Gaedtke, P. Jenny, and M. J. Krause, Temporal large eddy simulation with lattice Boltzmann methods. J. Comput. Phys. 454 (2022) 110991. https://doi.org/10.1016/j.jcp.2022.110991. [Google Scholar]
  56. S. Simonis, M. Frank, and M. J. Krause, Constructing relaxation systems for lattice Boltzmann methods. Appl. Math. Lett. 137 (2023) 108484. https://doi.org/10.1016/j.aml.2022.108484. [CrossRef] [Google Scholar]
  57. M. Siodlaczek, M. Gaedtke, S. Simonis, M. Schweiker, N. Homma, and M.J. Krause, Numerical evaluation of thermal comfort using a large eddy lattice Boltzmann method. Build. Environ. 192 (2021) 107618. https://doi.org/10. 1016/j.buildenv.2021.107618. [CrossRef] [Google Scholar]
  58. E. Tadmor, A review of numerical methods for nonlinear partial differential equations. Bull. Amer. Math. Soc. 49 (2012) 507–554. https://doi.org/10.1090/S0273-0979-2012-01379-4. [CrossRef] [MathSciNet] [Google Scholar]
  59. S. Ubertini, P. Asinari, and S. Succi, Three ways to lattice Boltzmann: A unified time-marching picture. Phys. Rev. E, 81 (2010) 016311. https://doi.org/10.1103/PhysRevE.81.016311. [CrossRef] [PubMed] [Google Scholar]
  60. G. Wissocq and P. Sagaut, Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes. J. Comput. Phys. 450 (2022) 110858. https://doi.org/10.1016/j.jcp.2021.110858. [CrossRef] [Google Scholar]
  61. D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Lecture Notes in Mathematics. Springer Berlin, Heidelberg (2000). https://doi.org/10.1007/b72010. [CrossRef] [Google Scholar]
  62. W. Zhao and W.-A. Yong, Maxwell iteration for the lattice Boltzmann method with diffusive scaling. Phys. Rev. E 95 (2017) 033311. https://doi.org/10.1103/PhysRevE.95.033311. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you