Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1705 - 1727
DOI https://doi.org/10.1051/m2an/2025043
Published online 30 June 2025
  1. L. Afraites, A. Hadri and A. Laghrib, A denoising model adapted for impulse and gaussian noises using a constrained-PDE. Inverse Prob. 36 (2020) 025006. [CrossRef] [Google Scholar]
  2. L. Afraites, A. Hadri, A. Laghrib and M. Nachaoui, A high order PDE-constrained optimization for the image denoising problem. Inverse Prob. Sci. Eng. 29 (2021) 1821–1863. [CrossRef] [Google Scholar]
  3. W.K. Allard, Total variation regularization for image denoising, I. Geometric theory. SIAM J. Math. Anal. 39 (2008) 1150–1190. [CrossRef] [Google Scholar]
  4. S. Antontsev and S. Shmarev, On a class of nonlocal evolution equations with the p[u(x, t)]-laplace operator. Non-linear Anal. Real World App. 56 (2020) 103165. [CrossRef] [Google Scholar]
  5. G. Aubert, P. Kornprobst and G. Aubert, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Vol. 147. Springer (2006). [CrossRef] [Google Scholar]
  6. R. Beinert and K. Bredies, Non-convex regularization of bilinear and quadratic inverse problems by tensorial lifting. Inverse Prob. 35 (2018) 015002. [Google Scholar]
  7. M. Bertero, P. Boccacci and C. De Mol, Introduction to Inverse Problems in Imaging. CRC Press (2021). [Google Scholar]
  8. A. Buccini and L. Reichel, Generalized cross validation for lp − lq minimization. Numer. Algorithms (2021) 1–22. [Google Scholar]
  9. A. Buccini and L. Reichel, Software for limited memory restarted lp − lq minimization methods using generalized Krylov subspaces. Electron. Trans. Numer. Anal. 61 (2024) 66–91. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Buccini, M. Pasha and L. Reichel, Modulus-based iterative methods for constrained lp − lq minimization. Inverse Prob. 36 (2020) 084001. [CrossRef] [Google Scholar]
  11. A. Buccini, O. De la Cruz Cabrera, C. Koukouvinos, M. Mitrouli and L. Reichel, Variable selection in saturated and supersaturated designs via lp − lq minimization. Commun. Stat.-Simul. Comput. 52 (2023) 4326–4347. [CrossRef] [Google Scholar]
  12. J.-F. Cai, R.H. Chan and M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Prob. Imaging 2 (2008) 187–204. [CrossRef] [Google Scholar]
  13. L. Calatroni and K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed Gaussian and salt-and-pepper noise removal. Inverse Prob. 35 (2019) 114001. [CrossRef] [Google Scholar]
  14. L. Calatroni, J.C. De Los Reyes and C.-B. Schönlieb, Infimal convolution of data discrepancies for mixed noise removal. SIAM J. Imaging Sci. 10 (2017) 1196–1233. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Chung and S. Gazzola, Flexible Krylov methods for lp regularization. SIAM J. Sci. Comput. 41 (2019) S149–S171. [CrossRef] [Google Scholar]
  16. P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann and C. Barillot, An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images. IEEE Trans. Med. Imaging 27 (2008) 425–441. [CrossRef] [PubMed] [Google Scholar]
  17. L. Diening, P. Harjulehto, P. H¨astö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents. Springer (2011). [CrossRef] [Google Scholar]
  18. I. El Mourabit, M. El Rhabi, A. Hakim, A. Laghrib and E. Moreau, A new denoising model for multi-frame super-resolution image reconstruction. Signal Process. 132 (2017) 51–65. [CrossRef] [Google Scholar]
  19. M. Elad, On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11 (2002) 1141–1151. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces wp(x)k (w). J. Math. Anal. App. 262 (2001) 749–760. [CrossRef] [Google Scholar]
  21. R. Glowinski, Y. Song and X. Yuan, An ADMM numerical approach to linear parabolic state constrained optimal control problems. Numer. Math. 144 (2020) 931–966. [CrossRef] [MathSciNet] [Google Scholar]
  22. Z. Guo, J. Yin and Q. Liu, On a reaction–diffusion system applied to image decomposition and restoration. Math. Comput. Model. 53 (2011) 1336–1350. [CrossRef] [Google Scholar]
  23. M. Hintermüller and A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed l1/l2 data-fidelity in image processing. SIAM J. Imaging Sci. 6 (2013) 2134–2173. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Hintermüller and T. Wu, Nonconvex TVq-models in image restoration: analysis and a trust-region regularization–based superlinearly convergent solver. SIAM J. Imaging Sci. 6 (2013) 1385–1415. [CrossRef] [MathSciNet] [Google Scholar]
  25. T.A. Johansen, On Tikhonov regularization, bias and variance in nonlinear system identification. Automatica 33 (1997) 441–446. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Laghrib, On some evolution equation with combined local and nonlocal p(x, [▽u])-laplace operator for image denoising. J. Franklin Inst. 361 (2024) 106667. [CrossRef] [Google Scholar]
  27. A. Laghrib and L. Afraites, Image denoising based on a variable spatially exponent PDE. Appl. Comput. Harmonic Anal. 68 (2024) 101608. [CrossRef] [Google Scholar]
  28. A. Laghrib, L. Afraites, A. Hadri and M. Nachaoui, A non-convex PDE-constrained denoising model for impulse and Gaussian noise mixture reduction. Inverse Prob. Imaging 17 (2023) 23–67. [CrossRef] [Google Scholar]
  29. J.J. Moré and D.C. Sorensen, Newton’s method. Technical report, Argonne National Lab. (ANL), Argonne, IL (United States) (1982). [Google Scholar]
  30. M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40 (2002) 965–994. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Nikolova, Weakly constrained minimization: application to the estimation of images and signals involving constant regions. J. Math. Imaging Vision 21 (2004) 155–175. [CrossRef] [MathSciNet] [Google Scholar]
  32. S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the h−1 norm. Multiscale Model. Simul. 1 (2003) 349–370. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Oulmelk, M. Srati, L. Afraites and A. Hadri, Implementation of the ADMM approach to constrained optimal control problem with a nonlinear time-fractional diffusion equation. Discrete Cont. Dyn. Syst.-S (2022). [Google Scholar]
  34. K. Papafitsoros and C.-B. Schönlieb, A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vision 48 (2014) 308–338. [CrossRef] [MathSciNet] [Google Scholar]
  35. M. Pasha, S. Gazzola, C. Sanderford and U.O. Ugwu, TRIPs-Py: techniques for regularization of inverse problems in python. Numer. Algorithms 99 (2024) 285–322. [Google Scholar]
  36. S. Ruder, An overview of gradient descent optimization algorithms. Preprint arXiv:1609.04747 (2016). [Google Scholar]
  37. M. Ruvzivcka, Modeling of electrorheological fluids. Electrorheological Fluids: Model. Math. Theory (2007) 1–37. [Google Scholar]
  38. J. Shao, Z. Guo, X. Shan, C. Zhang and B. Wu, A new non-divergence diffusion equation with variable exponent for multiplicative noise removal. Nonlinear Anal.: Real World App. 56 (2020) 103166. [CrossRef] [Google Scholar]
  39. J. Simon, Compact sets in the space Lp(O, T ; B). Annali di Matematica pura ed applicata 146 (1986) 65–96. [CrossRef] [Google Scholar]
  40. T. Steihaug, The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20 (1983) 626–637. [CrossRef] [MathSciNet] [Google Scholar]
  41. M. Yan, Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6 (2013) 1227–1245. [CrossRef] [MathSciNet] [Google Scholar]
  42. Y. Yu and S.T. Acton, Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11 (2002) 1260–1270. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  43. Z. Zaabouli, L. Afraites, A. Laghrib and A. Hadri, A variable p[u] exponent reaction-diffusion PDE for image denoising. J. Math. Anal. App. 540 (2024) 128624. [CrossRef] [Google Scholar]
  44. Z. Zaabouli, A. El Hakoume, L. Afraites and A. Laghrib, A novel coupled p(x) and fractional PDE denoising model with theoretical results. Int. J. Comput. Math. 101 (2024) 1300–1325. [CrossRef] [MathSciNet] [Google Scholar]
  45. C. Zeng, R. Jia and C. Wu, An iterative support shrinking algorithm for non-Lipschitz optimization in image restoration. J. Math. Imaging Vision 61 (2019) 122–139. [CrossRef] [MathSciNet] [Google Scholar]
  46. D. Zhang, K. Shi, Z. Guo and B. Wu, A class of elliptic systems with discontinuous variable exponents and l1 data for image denoising. Nonlinear Anal.: Real World App. 50 (2019) 448–468. [CrossRef] [Google Scholar]
  47. X. Zhang, Z. Peng, P. Zhu, T. Zhang, C. Li, H. Zhou and L. Jiao, Adaptive affinity loss and erroneous pseudo-label refinement for weakly supervised semantic segmentation, in Proceedings of the 29th ACM International Conference on Multimedia (2021) 5463–5472. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you