Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1729 - 1745 | |
DOI | https://doi.org/10.1051/m2an/2025036 | |
Published online | 26 June 2025 |
- N. Anyutin, I. Malay and A. Malyshev, Advantage of Stratton and Chu formulas for electromagnetic field reconstruction, in 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE (2019) 293–296. [Google Scholar]
- L. Banjai and A. Rieder, Convolution quadrature for the wave equation with a nonlinear impedance boundary condition. Math. Comput. 87 (2017) 1783–1819. [Google Scholar]
- T.S. Brown, T. Sánchez-Vizuet and F.-J. Sayas, Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid. ESAIM: Math. Model. Numer. Anal. 52 (2018) 423–455. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. [Google Scholar]
- A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 31–48. [Google Scholar]
- A. Buffa, M. Costabel and C. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92 (2002) 679–710. [CrossRef] [MathSciNet] [Google Scholar]
- A. Buffa, M. Costabel and D. Sheen, On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. App. 276 (2002) 845–867. [Google Scholar]
- I.Y. Chudinovich, The solvability of boundary equations in mixed problems for non-stationary Maxwell’s system. Math. Methods Appl. Sci. 20 (1997) 425–448. [Google Scholar]
- I. Chudinovich and A. Lytova, Mathematical questions of the boundary equation method in non-stationary problems of the diffraction of electromagnetic waves, in MMET ’96. VI-th International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings. IEEE (1996) 73–75. [Google Scholar]
- D.L. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Pure & Applied Mathematics. John Wiley & Sons, Nashville, TN (1983). [Google Scholar]
- D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Springer International Publishing (2019). [Google Scholar]
- M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. App. 106 (1985) 367–413. [Google Scholar]
- V. Domínguez, T. Sánchez-Vizuet and F.-J. Sayas, A fully discrete Calderón calculus for the two-dimensional elastic wave equation. Comput. Math. App. 69 (2015) 620–635. [Google Scholar]
- M. Hassell and F.-J. Sayas, Convolution Quadrature for Wave Simulations. Springer International Publishing (2016) 71–159. [Google Scholar]
- M.E. Hassell and F.-J. Sayas, A fully discrete BEM-FEM scheme for transient acoustic waves. Comput. Methods Appl. Mech. Eng. 309 (2016) 106–130. [CrossRef] [Google Scholar]
- J. Helsing, A. Karlsson and A. Rosén, Comparison of integral equations for the Maxwell transmission problem with general permittivities. Adv. Comput. Math. 47 (2021) 1–32. [CrossRef] [Google Scholar]
- G.C. Hsiao and T. Sánchez-Vizuet, Boundary integral formulations for transient linear thermoelasticity with combined-type boundary conditions. SIAM J. Math. Anal. 53 (2021) 3888–3911. [Google Scholar]
- G.C. Hsiao and T. Sánchez-Vizuet, Time-dependent wave-structure interaction revisited: thermo-piezoelectric scatterers. Fluids 6 (2021) 101. [CrossRef] [Google Scholar]
- G.C. Hsiao and W.L. Wendland, Boundary Integral Equations. Springer International Publishing (2021). [CrossRef] [Google Scholar]
- G.C. Hsiao, T. Sánchez-Vizuet and F.-J. Sayas. Boundary and coupled boundary–finite element methods for transient wave–structure interaction. IMA J. Numer. Anal. 37 (2016) 237–265. [Google Scholar]
- G.C. Hsiao, T. Sánchez-Vizuet, F.-J. Sayas and R.J. Weinacht, A time-dependent wave-thermoelastic solid interaction. IMA J. Numer. Anal. 39 (2018) 924–956. [Google Scholar]
- G.C. Hsiao, T. Sánchez-Vizuet and W.L. Wendland, A boundary-field formulation for elastodynamic scattering. J. Elast. 153 (2022) 5–27. [Google Scholar]
- G.C. Hsiao, T. Sánchez-Vizuet and W.L. Wendland, Boundary-field formulation for transient electromagnetic scattering by dielectric scatterers and coated conductors. SIAM J. Math. Anal. 57 (2025) 1502–1525. [Google Scholar]
- D. Korikov, B. Plamenevskii and O. Sarafanov, Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains. Springer International Publishing (2021). [CrossRef] [Google Scholar]
- A.R. Laliena and F.-J. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112 (2009) 637–678. [Google Scholar]
- C. Lubich, Convolution quadrature and discretized operational calculus. I. Numer. Math. 52 (1988) 129–145. [Google Scholar]
- C. Lubich, Convolution quadrature and discretized operational calculus. II. Numer. Math. 52 (1988) 413–425. [Google Scholar]
- C. Lubich, Convolution quadrature revisited. BIT Numer. Math. 44 (2004) 503–514. [CrossRef] [Google Scholar]
- C. Lubich and R. Schneider, Time discretization of parabolic boundary integral equations. Numer. Math. 63 (1992) 455–481. [Google Scholar]
- A.Y. Lytova and I.Y. Chudinovich, Boundary equations in problems of diffraction of electromagnetic waves with impedance boundary condition. Math. Notes 73 (2003) 71–84. [Google Scholar]
- J.M. Melenk and A. Rieder, Runge–Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation. J. Integr. Equ. App. 29 (2017) 189–250. [Google Scholar]
- J.-C. Nédélec, Acoustic and Electromagnetic Equations. Springer New York (2001). [Google Scholar]
- J.-C. Nedelec and J. Planchard, Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans R3. Revue française d’automatique informatique recherche opérationnelle. Mathématique 7 (1973) 105–129. [Google Scholar]
- J. Nick, B. Kovács and C. Lubich, Time-dependent electromagnetic scattering from thin layers. Numer. Math. 150 (2022) 1123–1164. [Google Scholar]
- T. Qiu and F.-J. Sayas, New mapping properties of the time domain electric field integral equation. ESAIM: Math. Model. Numer. Anal. 51 (2016) 1–15. [Google Scholar]
- A. Rieder, F. Sayas and J. Melenk, Time domain boundary integral equations and convolution quadrature for scattering by composite media. Math. Comput. 91 (2022) 2165–2195. [Google Scholar]
- T. Sánchez-Vizuet and F.-J. Sayas, Symmetric boundary-finite element discretization of time dependent acoustic scattering by elastic obstacles with piezoelectric behavior. J. Sci. Comput. 70 (2017) 1290–1315. [Google Scholar]
- F.-J. Sayas, Errata to: Retarded potentials and time domain boundary integral equations: a road-map. https://team-pancho.github.io/documents/ERRATA.pdf. [Google Scholar]
- F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations. Springer International Publishing (2016). [Google Scholar]
- J.A. Stratton and L.J. Chu, Diffraction theory of electromagnetic waves. Phys. Rev. 56 (1939) 99–107. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.