Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1531 - 1564 | |
DOI | https://doi.org/10.1051/m2an/2025034 | |
Published online | 04 June 2025 |
- L. Bonaventura, Exponential integrators for multiple time scale problems of environmental fluid dynamics. Innovative Integrators Workshop 27–30 October 2010. Universit¨at Innsbruck, Austria (2010). [Google Scholar]
- M. Brachet, L. Debreu and C. Eldred, Comparison of exponential integrators and traditional time integration schemes for the shallow water equations. Appl. Numer. Math. 180 (2022) 55–84. [CrossRef] [MathSciNet] [Google Scholar]
- T. Buvoli and M.L. Minion, On the stability of exponential integrators for non-diffusive equations. J. Comput. Appl. Math. 409 (2022) 114126. [CrossRef] [Google Scholar]
- J.G. Caldas Steinstraesser, P.d.S. Peixoto and M. Schreiber, Code, benchmark tests and postprocessing scripts for “Analysis and improvement of a semi-Lagrangian exponential scheme for the shallow-water equations on the rotating sphere” (2024). https://gitlab.inria.fr/sweet/sweet/-/tree/paper_2nd_order_SLETDRK/benchmarks_sphere/paper_2nd_order_sletdrk. [Google Scholar]
- J.G. Caldas Steinstraesser, P.d.S. Peixoto and M. Schreiber, Parallel-in-time integration of the shallow water equations on the rotating sphere using Parareal and MGRIT. J. Comput. Phys. 496 (2024) 112591. [CrossRef] [Google Scholar]
- J. Certaine, The solution of ordinary differential equations with large time constants. Math. Methods Digital Comput. 1 (1960) 128–132. [Google Scholar]
- C. Clancy and J.A. Pudykiewicz, On the use of exponential time integration methods in atmospheric models. Tellus A: Dyn. Meteorol. Oceanography 65 (2013) 20898. [CrossRef] [Google Scholar]
- S. Cox and P. Matthews, Exponential time differencing for stiff systems. J. Comput. Phys. 176 (2002) 430–455. [CrossRef] [MathSciNet] [Google Scholar]
- N. Crouseilles, L. Einkemmer and J. Massot, Exponential methods for solving hyperbolic problems with application to collisionless kinetic equations. J. Comput. Phys. 420 (2020) 109688. [CrossRef] [MathSciNet] [Google Scholar]
- D. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Springer, New York (2010). [CrossRef] [Google Scholar]
- ECMWF and P. White, IFS Documentation CY25R1 – Part III: Dynamics and Numerical Procedures. ECMWF (2003). [Google Scholar]
- J. Galewsky, R.K. Scott and L.M. Polvani, An initial-value problem for testing numerical models of the global shallow-water equations. Tellus A: Dyn. Meteorol. Oceanography 56 (2004) 429–440. [CrossRef] [Google Scholar]
- S. Gaudreault and J.A. Pudykiewicz, An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere. J. Comput. Phys. 322 (2016) 827–848. [CrossRef] [MathSciNet] [Google Scholar]
- T.S. Haut, T. Babb, P.G. Martinsson and B.A. Wingate, A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator. IMA J. Numer. Anal. 36 (2015) 688–716. [Google Scholar]
- M. Hochbruck and A. Ostermann, Exponential integrators of rosenbrock-type. Oberwolfach Rep. 3 (2006) 1107–1110. [Google Scholar]
- M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hortal, The development and testing of a new two-time-level semi-lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Meteorol. Soc. 128 (2002) 1671–1687. [Google Scholar]
- C. Jablonowski and D.L. Williamson, The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, in Numerical Techniques for Global Atmospheric Models, Chapter 13, edited by P. Lauritzen, C. Jablonowski, M. Taylor and R. Nair. Springer Berlin Heidelberg (2011) 381–493. [CrossRef] [Google Scholar]
- J.D. Lawson, Generalized Runge–Kutta processes for stable systems with large lipschitz constants. SIAM J. Numer. Anal. 4 (1967) 72–380. [Google Scholar]
- M.S. Longuet-Higgins, The eigenfunctions of Laplace’s tidal equations over a sphere. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 262 (1968) 511–607. [CrossRef] [Google Scholar]
- V.T. Luan, J.A. Pudykiewicz and D.R. Reynolds, Further development of efficient and accurate time integration schemes for meteorological models. J. Comput. Phys. 376 (2019) 817–837. [CrossRef] [MathSciNet] [Google Scholar]
- P. Lynch, A Lagrange–Laplace integration scheme for weather prediction and climate modelling. Meteorology 1 (2022) 355–376. [CrossRef] [Google Scholar]
- G. Mengaldo, A. Wyszogrodzki, M. Diamantakis, S.-J. Lock, F.X. Giraldo and N.P. Wedi, Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch. Comput. Methods Eng 26 (2018) 663–684. [Google Scholar]
- B.V. Minchev and W.M. Wright, A review of exponential integrators for first-order semi-linear problems. Technical report, Norwegian University of Science and Technology (2005). [Google Scholar]
- P.S. Peixoto and M. Schreiber, Semi-Lagrangian exponential integration with application to the rotating shallow water equations. SIAM J. Sci. Comput. 41 (2019) B903–B928. [CrossRef] [Google Scholar]
- P.S. Peixoto, J. Thuburn and M.J. Bell, Numerical instabilities of spherical shallow-water models considering small equivalent depths. Q. J. R. Meteorol. Soc. 144 (2017) 156–171. [Google Scholar]
- J.A. Pudykiewicz and C. Clancy, Convection experiments with the exponential time integration scheme. J. Comput. Phys. 449 (2022) 110803. [CrossRef] [Google Scholar]
- G. Rainwater, K.C. Viner and P.A. Reinecke, Exponential time integration for 3d compressible atmospheric models. Preprint arXiv:2309.09869 (2023). [Google Scholar]
- Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebra App. 34 (1980) 269–295. [CrossRef] [Google Scholar]
- N. Schaeffer, Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14 (2013) 751–758. [Google Scholar]
- M. Schreiber and R. Loft, A parallel time integrator for solving the linearized shallow water equations on the rotating sphere. Numer. Linear Algebra App. 26 (2019) e2220. [CrossRef] [Google Scholar]
- M. Schreiber, N. Schaeffer and R. Loft, Exponential integrators with parallel-in-time rational approximations for the shallow-water equations on the rotating sphere. Parallel Comput. 85 (2019) 56–65. [CrossRef] [MathSciNet] [Google Scholar]
- R.K. Scott, L.M. Harris and L.M. Polvani, A test case for the inviscid shallow-water equations on the sphere. Q. J. R. Meteorol. Soc. 142 (2015) 488–495. [Google Scholar]
- V.V. Shashkin and G.S. Goyman, Semi-Lagrangian exponential time-integration method for the shallow water equations on the cubed sphere grid. Russian J. Numer. Anal. Math. Modell. 35 (2020) 355–366. [CrossRef] [Google Scholar]
- W.C. Skamarock, Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weather Rev. 132 (2004) 3019–3032. [CrossRef] [Google Scholar]
- A. Staniforth and J. Côté, Semi-lagrangian integration schemes for atmospheric models – a review. Mon. Weather Rev. 119 (1991) 2206–2223. [CrossRef] [Google Scholar]
- J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Texts in Applied Mathematics, 3rd edition. Springer, New York, NY (2002). [CrossRef] [Google Scholar]
- P.N. Swarztrauber, Spectral transform methods for solving the shallow-water equations on the sphere. Mon. Weather Rev. 124 (1996) 730–744. [CrossRef] [Google Scholar]
- C. Temperton, Treatment of the coriolis terms in semi-Lagrangian spectral models. Atmosphere-Ocean 35 (1997) 293–302. [CrossRef] [Google Scholar]
- J. Thuburn, Numerical wave propagation on the hexagonal c-grid. J. Comput. Phys. 227 (2008) 5836–5858. [CrossRef] [MathSciNet] [Google Scholar]
- U.S. National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Prediction (NCEP), Global Forecast System – Global Spectral Model (GSM) – V13.0.2. https://vlab.noaa.gov/web/gfs/documentation (2016). [Google Scholar]
- S. Vasylkevych and N. Žagar, A high-accuracy global prognostic model for the simulation of rossby and gravity wave dynamics. Q. J. R. Meteorol. Soc. 147 (2021) 1989–2007. [CrossRef] [Google Scholar]
- D.L. Williamson, The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Jpn. Ser. II 85B (2007) 241–269. [CrossRef] [Google Scholar]
- D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob and P.N. Swarztrauber, A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102 (1992) 211–224. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.