Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1565 - 1600
DOI https://doi.org/10.1051/m2an/2025035
Published online 04 June 2025
  1. M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory. Adv. Differ. Equ. 10 (2005) 309–360. [Google Scholar]
  2. R. Alonso, M. Santillana and C. Dawson, On the diffusive wave approximation of the shallow water equations. Eur. J. Appl. Math. 19 (2008) 576–606. [Google Scholar]
  3. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edition. Birkh¨auser Verlag, Basel (2008). [Google Scholar]
  5. B. Andreianov, M. Bendahmane and K.H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7 (2010) 1–67. [CrossRef] [Google Scholar]
  6. B. Andreianov, C. Cancès and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273 (2017) 3633–3670. [Google Scholar]
  7. J.W. Barrett and W.B. Liu, Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. Anal. 31 (1994) 413–428. [Google Scholar]
  8. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [Google Scholar]
  9. F. Bolley and J.A. Carrillo, Nonlinear diffusion: geodesic convexity is equivalent to Wasserstein contraction. Comm. Part. Differ. Equ. 39 (2014) 1860–1869. [CrossRef] [Google Scholar]
  10. C. Cancès and C. Guichard, Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17 (2017) 1525–1584. [Google Scholar]
  11. C. Cancès, C. Chainais-Hillairet and S. Krell, Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations. Comput. Methods Appl. Math. 18 (2018) 407–432. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Cancès, T.O. Gallouët and G. Todeschi, A variational finite volume scheme for Wasserstein gradient flows. Numer. Math. 146 (2020) 437–480. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Cancès, J. Droniou, C. Guichard, G. Manzini, M. Olivares and I.S. Pop, Error Estimates for the Gradient Discretisation Method on Degenerate Parabolic Equations of Porous Medium Type. Springer International Publishing, Cham (2021). [Google Scholar]
  14. C. Cancès, F. Nabet and M. Vohralík, Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. Math. Comput. 90 (2021) 517–563. [Google Scholar]
  15. J.A. Carrillo, Y.-P. Choi and O. Tse, Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces. Comm. Math. Phys. 365 (2019) 329–361. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.A. Carrillo, K. Craig, L. Wang and C. Wei, Primal dual methods for Wasserstein gradient flows. Found. Comput. Math. (2021). [Google Scholar]
  17. C. Chainais-Hillairet, M. Herda, S. Lemaire and J. Moatti, Long-time behaviour of hybrid finite volume schemes for advection–diffusion equations: linear and nonlinear approaches. Numer. Math. 151 (2022) 963–1016. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Chatzipantelidis, Z. Horváth and V. Thomée, On preservation of positivity in some finite element methods for the heat equation. Comput. Methods Appl. Math. 15 (2015) 417–437. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Disser and M. Liero, On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Netw. Heterog. Media 10 (2015) 233–253. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numer. Math. 132 (2016) 721–766. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. Vol. 42 of Mathématiques et Applications. Springer International Publishing, Cham (2018). [CrossRef] [Google Scholar]
  22. A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Series. Springer, New York (2004). [Google Scholar]
  23. A. Esposito, F.S. Patacchini, A. Schlichting and D. Slepčev, Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit. Arch. Ration. Mech. Anal. 240 (2021) 699–760. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook Of Numerical Analysis, edited by P. Ciarlet and J.L. Lions. Vol. VII. North-Holland, Amsterdam (2000) 715–1022. [Google Scholar]
  25. R. Eymard, T. Gallouët, C. Guichard, R. Herbin and R. Masson, TP or not TP, that is the question. Comput. Geosci. 18 (2014) 285–296. [Google Scholar]
  26. T. Gallouët, Discrete functional analysis tools for some evolution equations. Comput. Methods Appl. Math. 18 (2018) 477–493. [Google Scholar]
  27. P. Gladbach, E. Kopfer, J. Maas and L. Portinale, Homogenisation of dynamical optimal transport on periodic graphs. Calculus Variations Part. Differ. Equ. 62 (2023) 143. [CrossRef] [PubMed] [Google Scholar]
  28. Y. Hafiene, J. Fadili, C. Chesneau and A.E. Moataz, Continuum limit of the nonlocal p-Laplacian evolution problem on random inhomogeneous graphs. ESAIM: Math. Model. Numer. Anal. 54 (2020) 565–589. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  29. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Kamin and J.-L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 4 (1988) 339–354. [CrossRef] [Google Scholar]
  32. C. Lattanzio and A.E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories. Comm. Part. Differ. Equ. 42 (2017) 261–290. [CrossRef] [Google Scholar]
  33. W. Li, J. Lu and L. Wang, Fisher information regularization schemes for Wasserstein gradient flows. J. Comput. Phys. 416 (2020) 109449. [CrossRef] [MathSciNet] [Google Scholar]
  34. J. Maas, Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250–2292. [Google Scholar]
  35. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Moussa, Some variants of the classical Aubin-Lions lemma. J. Evol. Equ. 16 (2016) 65–93. [CrossRef] [MathSciNet] [Google Scholar]
  37. A. Natale and G. Todeschi, TPFA finite volume approximation of Wasserstein gradient flows, in Finite Volumes for Complex Applications IX – Methods, Theoretical Aspects, Examples. Vol. 323 of Springer Proceedings in Mathematics & Statistics, edited by R. Klöfkorn, E. Keilegavlen, F.A. Radu and J. Fuhrmann. Springer (2020) 193–202. [Google Scholar]
  38. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Part. Differ. Equ. 26 (2001) 101–174. [CrossRef] [Google Scholar]
  39. N. Peton, C. Cancès, D. Granjeon, Q.-H. Tran and S. Wolf, Numerical scheme for a water flow-driven forward stratigraphic model. Comput. Geosci. 24 (2020) 37–60. [CrossRef] [MathSciNet] [Google Scholar]
  40. R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395–431. [MathSciNet] [Google Scholar]
  41. F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and Their Applications, 1st edition. Vol. 87. Birkh¨auser Basel (2015). [CrossRef] [Google Scholar]
  42. C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [CrossRef] [Google Scholar]
  43. Y. Voet, E. Sande and A. Buffa, A mathematical theory for mass lumping and its generalization with applications to isogeometric analysis. Comput. Methods Appl. Mech. Eng. 410 (2023) 116033. [CrossRef] [Google Scholar]
  44. D. Wei, Existence, uniqueness, and numerical analysis of solutions of a quasilinear parabolic problem. SIAM J. Numer. Anal. 29 (1992) 484–497. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you