Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1365 - 1397
DOI https://doi.org/10.1051/m2an/2025023
Published online 27 May 2025
  1. B. Ayuso De Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50 (2016) 879–904. [Google Scholar]
  2. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  3. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. [Google Scholar]
  5. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. [Google Scholar]
  6. L. Beirão da Veiga, F. Dassi, C. Lovadina and G. Vacca, SUPG-stabilized virtual elements for diffusion–convection problems: a robustness analysis. ESAIM Math. Model. Numer. Anal. 55 (2021) 2233–2258. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. L. Beirao da Veiga, F. Brezzi, L.D. Marini and A. Russo, The virtual element method. ACTA Numer. 32 (2023) 123–202. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Beirão da Veiga, C. Lovadina and M. Trezzi, CIP-stabilized Virtual Elements for diffusion–convection–reaction problems. IMA J. Numer. Anal. (2024). DOI: 10.1093/imanum/drae020. [Google Scholar]
  9. M.F. Benedetto, S. Berrone, A. Borio, S. Pieraccini and S. Scialò, Order preserving SUPG stabilization for the virtual element formulation of advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 293 (2016) 18–40. [CrossRef] [Google Scholar]
  10. S. Berrone, A. Borio and G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection–diffusion–reaction equations. Comput. Methods Appl. Mech. Eng. 340 (2018) 500–529. [CrossRef] [Google Scholar]
  11. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [Google Scholar]
  12. S.C. Brenner and L.Y. Sung, Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. [Google Scholar]
  13. F. Brezzi and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14 (2004) 1893–1903. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259. [CrossRef] [Google Scholar]
  15. E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2006) 2012–2033. [Google Scholar]
  16. E. Burman and A. Ern, Continuous interior penalty 𝑕p-finite element methods for advection and advection–diffusion equations. Math. Comput. 76 (2007) 1119–1140. [CrossRef] [Google Scholar]
  17. E. Burman and P. Hansbo, Edge stabilization for galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004) 1437–1453. [CrossRef] [Google Scholar]
  18. A. Cangiani, G. Manzini and O. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. [Google Scholar]
  19. M. Cicuttin, A. Ern and N. Pignet, Hybrid High-Order Methods: A Primer with Applications to Solid Mechanics. Springer (2021). [CrossRef] [Google Scholar]
  20. D. Di Pietro and J. Droniou, The hybrid high-order method for polytopal meshes, in Number 19 in Modeling, Simulation and Application. Springer (2020). [Google Scholar]
  21. D. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69. Springer Science & Business Media (2011). [Google Scholar]
  22. J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing Methods in Applied Sciences, edited by R. Glowinski and J.L. Lions. Springer Berlin Heidelberg, Berlin, Heidelberg (1976) 207–216. [CrossRef] [Google Scholar]
  23. M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. [Google Scholar]
  24. P. Knobloch and G. Lube, Local projection stabilization for advection–diffusion–reaction problems: one-level vs. two-level approach. Appl. Numer. Math. 59 (2009) 2891–2907. [CrossRef] [MathSciNet] [Google Scholar]
  25. Y. Li and M. Feng, A local projection stabilization virtual element method for convection–diffusion–reaction equation. Appl. Math. Comput. 411 (2021) 126536. [Google Scholar]
  26. G. Manzini P.F. Antonietti, L. Beirao da Veiga, The Virtual Element Method and its Applications. SEMA-SIMAI Springer Series. Vol. 31. Springer (2021). [Google Scholar]
  27. G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: Math. Model. Numer. Anal. 41 (2007) 713–742. [CrossRef] [EDP Sciences] [Google Scholar]
  28. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilr¨aumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  29. B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM (2008). [CrossRef] [Google Scholar]
  30. G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations. Mathematical Models and Methods in Applied Sciences, 28 (2018) 159–194. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you