Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1333 - 1363 | |
DOI | https://doi.org/10.1051/m2an/2024086 | |
Published online | 27 May 2025 |
- M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the burgers equation. Ann. Appl. Probab. 6 (1996) 818–861. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35 (1998) 2317–2328. [CrossRef] [MathSciNet] [Google Scholar]
- R. Carmona and F. Delarue, Singular FBSDEs and scalar conservation laws driven by diffusion processes. Probab. Theory Relat. Fields 157 (2013) 333–388. [CrossRef] [Google Scholar]
- R. Carmona, F. Delarue, G.-E. Espinosa and N. Touzi, Singular forward–backward stochastic differential equations and emissions derivatives. Ann. Appl. Probab. 23 (2013) 1086–1128. [CrossRef] [MathSciNet] [Google Scholar]
- J.-F. Chassagneux and C. Garcia Trillos, Cubature method to solve BSDEs: error expansion and complexity control. Math. Comput. 89 (2020) 1895–1932. [CrossRef] [Google Scholar]
- J.-F. Chassagneux and M. Yang, Numerical approximation of singular forward-backward SDEs. J. Comput. Phys. 468 (2022) 111459. [CrossRef] [Google Scholar]
- J.-F. Chassagneux, D. Crisan and F. Delarue, Numerical method for FBSDEs of Mckean–Vlasov type. Ann. Appl. Probab. 29 (2019) 1640–1684. [MathSciNet] [Google Scholar]
- J.-F. Chassagneux, H. Chotai and D. Crisan, Modelling multiperiod carbon markets using singular forward-backward SDEs. Math. Oper. Res. 48 (2023) 463–497. [CrossRef] [MathSciNet] [Google Scholar]
- L.G. Gyurkó and T.J. Lyons, Efficient and practical implementations of cubature on wiener space, in Stochastic Analysis 2010. Springer (2011) 73–111. [Google Scholar]
- S. Howison and D. Schwarz, Risk-neutral pricing of financial instruments in emission markets: a structural approach. SIAM J. Finan. Math. 3 (2012) 709–739. [CrossRef] [Google Scholar]
- B. Jourdain and J. Reygner, Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete Contin. Dyn. Syst. – A 36 (2016). [Google Scholar]
- C. Litterer and T. Lyons, High order recombination and an application to cubature on Wiener space. Ann. Appl. Probab. 22 (2012) 1301–1327. [CrossRef] [MathSciNet] [Google Scholar]
- J. Zhang, Some fine properties of backward stochastic differential equations. Ph.D. thesis, Purdue University (2001). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.