Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1657 - 1683
DOI https://doi.org/10.1051/m2an/2025037
Published online 18 June 2025
  1. M. Asato, A. Settels, T. Hoshino, T. Asada, S. Blügel, R. Zeller and P.H. Dederichs, Full-potential KKR calculations for metals and semiconductors. Phys. Rev. B 60 (1999) 157–179. [Google Scholar]
  2. R. Baer and M. Head-Gordon, Sparsity of the density matrix in Kohn-Sham density functional theory and an assessment of linear system-size scaling methods. Phys. Rev. Lett. 79 (1997) 3962. [CrossRef] [Google Scholar]
  3. M. Benzi, P. Boito and N. Razouk, Decay properties of spectral projectors with applications to electronic structure. SIAM Rev. 55 (2013) 3–64. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Bloch, Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik 52 (1929) 555–600. [CrossRef] [Google Scholar]
  5. J. Braun and C. Ortner, Sharp uniform convergence rate of the supercell approximation of a crystalline defect. SIAM J. Numer. Anal. 58 (2020) 279–297. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Cancès and V. Ehrlacher, Local defects are always neutral in the Thomas–Fermi–von Weisz¨acker theory of crystals. Arch. Ration. Mech. Anal. 202 (2011) 933–973. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Cancès and C. Le Bris, Mathematical modeling of point defects in materials science. Math. Models Methods Appl. Sci. 23 (2013) 1795–1859. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Cancès, A. Deleurence and M. Lewin, A new approach to the modeling of local defects in crystals: the reduced Hartree–Fock case. Commun. Math. Phys. 281 (2008) 129–177. [CrossRef] [Google Scholar]
  9. E. Cancès, A. Deleurence and M. Lewin, Non-perturbative embedding of local defects in crystalline materials. J. Phys. Condens. Matter 20 (2008) 294213. [CrossRef] [Google Scholar]
  10. E. Cancès, S. Lahbabi and M. Lewin, Mean-field models for disordered crystals. J. Math. Pures Appl. 100 (2013) 241–274. [CrossRef] [MathSciNet] [Google Scholar]
  11. H. Chen and C. Ortner, QM/MM methods for crystalline defects. part 1: locality of the tight binding model. Multiscale Model. Simul. 14 (2016) 232–264. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. Chen and R. Schneider, Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations. ESAIM Math. Model. Numer. Anal. 49 (2015) 755–785. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. H. Chen and R. Schneider, Augmented plane wave methods for full-potential calculations, in Density Functional Theory: Modeling, Mathematical Analysis, Computational Methods, and Applications, edited by E. Cancès and G. Friesecke. Springer (2022) 427–445. [Google Scholar]
  14. H. Chen, J. Lu and C. Ortner, Thermodynamic limit of crystal defects with finite temperature tight binding. Arch. Ration. Mech. Anal. 230 (2018) 701–733. [Google Scholar]
  15. H. Chen, F.Q. Nazar and C. Ortner, Geometry equilibration of crystalline defects in quantum and atomistic descriptions. Math. Models Method. Appl. Sci. 29 (2019) 419–492. [CrossRef] [Google Scholar]
  16. M. Colbrook, A. Horning and A. Townsend, Computing spectral measures of self-adjoint operators. SIAM Rev. 63 (2021) 489–524. [CrossRef] [MathSciNet] [Google Scholar]
  17. M.J. Colbrook, A. Horning, K. Thicke and A.B. Watson, Computing spectral properties of topological insulators without artificial truncation or supercell approximation. IMA J. Appl. Math. 88 (2023) 1–42. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys. 34 (1973) 251–270. [Google Scholar]
  19. W. E and J. Lu, The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy–Born rule. Arch. Ration. Mech. Anal. 199 (2011) 407–433. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Ebert, D. Koedderitzsch and J. Minar, Calculating condensed matter properties using the KKR–Green’s function method–recent developments and applications. Rep. Prog. Phys. 74 (2011) 096501. [CrossRef] [Google Scholar]
  21. E.N. Economou, Green’s Functions in Quantum Physics. Springer Science & Business Media (2006). [CrossRef] [Google Scholar]
  22. V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ration. Mech. Anal. 222 (2016) 1217–1268. [Google Scholar]
  23. R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis: Proceedings of the Dundee Conference on Numerical Analysis. Springer (1975). [Google Scholar]
  24. R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems. SIAM J. Sci. Comput. 14 (1993) 470–482. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.W. Freund and N.M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60 (1991) 315–339. [CrossRef] [MathSciNet] [Google Scholar]
  26. I. Galanakis, G. Bihlmayer, V. Bellini, N. Papanikolaou, R. Zeller, S. Blügel and P.H. Dederichs, Broken-bond rule for the surface energies of noble metals. Europhys. Lett. 58 (2002) 751–757. [CrossRef] [Google Scholar]
  27. A. Gil, J. Segura and N.M. Temme, Numerical Methods for Special Functions. SIAM (2007). [CrossRef] [Google Scholar]
  28. A. Gonis and W.H. Butler, Multiple Scattering in Solids. Springer-Verlag New York (2000). [CrossRef] [Google Scholar]
  29. A. Gonis, X.-G. Zhang and D.M. Nicholson, Multiple-scattering Green-function method for space-filling cell potentials. Phys. Rev. B 40 (1989) 947–965. [CrossRef] [PubMed] [Google Scholar]
  30. O.I. Gorbatov, G. Johansson, A. Jakobsson, S. Mankovsky, H. Ebert, I. Di Marco, J. Minár and C. Etz, Magnetic exchange interactions in yttrium iron garnet: a fully relativistic first-principles investigation. Phys. Rev. B 104 (2021) 174401. [CrossRef] [Google Scholar]
  31. W. Kohn and N. Rostoker, Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 94 (1954) 1111–1120. [CrossRef] [Google Scholar]
  32. J. Korringa, On the calculation of the energy of a Bloch wave in a metal. Physica 13 (1947) 392–400. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Levitt, Screening in the finite-temperature reduced Hartree–Fock model. Arch. Ration. Mech. Anal. 238 (2020) 901–927. [CrossRef] [MathSciNet] [Google Scholar]
  34. X. Li, ScreenedKKR. https://github.com/Xiaoxu-Li/ScreenedKKR (2023). [Google Scholar]
  35. X. Li, L. Lin and J. Lu, PEXSI-Σ: a Green’s function embedding method for Kohn–Sham density functional theory. Ann. Math. Sci. Appl. 3 (2018) 441–472. [CrossRef] [MathSciNet] [Google Scholar]
  36. X. Li, H. Chen and X. Gao, Numerical analysis of multiple scattering theory for electronic structure calculations. IMA J. Numer. Anal. 43 (2023) 2228–2264. [CrossRef] [MathSciNet] [Google Scholar]
  37. L. Lin and J. Lu, Decay estimates of discretized Green’s functions for Schrödinger type operators. Sci. China Math. 59 (2016) 1561–1578. [CrossRef] [MathSciNet] [Google Scholar]
  38. L. Lin, C. Yang, J. Lu, L. Ying and W. E, A fast parallel algorithm for selected inversion of structured sparse matrices with application to 2D electronic structure calculations. SIAM J. Sci. Comput. 33 (2011) 1329–1351. [CrossRef] [MathSciNet] [Google Scholar]
  39. L. Lin, C. Yang, J.C. Meza, J. Lu, L. Ying and W. E, Selinv – an algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw. 37 (2011) 1–19. [CrossRef] [Google Scholar]
  40. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2005). [Google Scholar]
  41. D. Massatt, M. Luskin and C. Ortner, Electronic density of states for incommensurate layers. Multiscale Model. Simul. 15 (2017) 476–499. [CrossRef] [MathSciNet] [Google Scholar]
  42. P. Mavropoulos and N. Papanikolaou, The Korringa–Kohn–Rostoker (KKR) Green function method I. Electronic structure of periodic systems. Comput. Nanosci.: Do It Yourself 31 (2006) 131–158. [Google Scholar]
  43. O.L.W. McHugh, W. Goh, M. Gradhand and D.A. Stewart, Impact of impurities on the spin Hall conductivity in β-W. Phys. Rev. Mater. 4 (2020) 094404. [CrossRef] [Google Scholar]
  44. G. Meinardus, Approximation of Functions: Theory and Numerical Methods. Vol. 13. Springer (2012). [Google Scholar]
  45. A. Modinos, V. Yannopapas and N. Stefanou, Scattering of electromagnetic waves by nearly periodic structures. Phys. Rev. B 61 (2000) 8099–8107. [CrossRef] [Google Scholar]
  46. D.M.C. Nicholson, G.M. Stocks, Y. Wang, W.A. Shelton, Z. Szotek and W.M. Temmerman, Stationary nature of the density-functional free energy: application to accelerated multiple-scattering calculations. Phys. Rev. B 50 (1994) 14686. [CrossRef] [PubMed] [Google Scholar]
  47. B. Nonas, K. Wildberger, R. Zeller, P.H. Dederichs and B.L. Gyorffy, Magnetic properties of 4d impurities on the (001) surfaces of nickel and iron. Phys. Rev. B 57 (1998) 84–87. [CrossRef] [Google Scholar]
  48. A.V. Ruban and I.A. Abrikosov, Configurational thermodynamics of alloys from first principles: effective cluster interactions. Rep. Prog. Phys. 71 (2008) 046501. [CrossRef] [Google Scholar]
  49. A. Rusanu, G.M. Stocks, Y. Wang and J.S. Faulkner, Green’s functions in full-potential multiple-scattering theory. Phys. Rev. B 84 (2011) 035102. [CrossRef] [Google Scholar]
  50. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856–869. [CrossRef] [MathSciNet] [Google Scholar]
  51. T.G. Saunderson, Z. Gy˝orgypál, J.F. Annett, G. Csire, B. Újfalussy and M. Gradhand, Real-space multiple scattering theory for superconductors with impurities. Phys. Rev. B 102 (2020) 245106. [CrossRef] [Google Scholar]
  52. D.J. Singh and L. Nordstrom, Planewaves, Pseudopotentials and the LAPW Method. Springer (2006). [Google Scholar]
  53. K. Thicke, A.B. Watson and J. Lu, Computing edge states without hard truncation. SIAM J. Sci. Comput. 43 (2021) B323–B353. [CrossRef] [Google Scholar]
  54. A. Thiess, R. Zeller, M. Bolten, P.H. Dederichs and S. Blügel, Massively parallel density functional calculations for thousands of atoms: KKRnano. Phys. Rev. B 85 (2012) 235103. [CrossRef] [Google Scholar]
  55. Y. Wang, G.M. Stocks, W.A. Shelton, D.M.C. Nicholson, Z. Szotek and W.M. Temmerman, Order-N multiple scattering approach to electronic structure calculations. Phys. Rev. Lett. 75 (1995) 2867. [CrossRef] [PubMed] [Google Scholar]
  56. T. Wang, H. Chen, A. Zhou, Y. Zhou and D. Massatt, Convergence of the planewave approximations for quantum incommensurate systems. Multiscale Model. Simul. 23 (2025) 545–576. [CrossRef] [MathSciNet] [Google Scholar]
  57. K. Wildberger, P. Lang, R. Zeller and P.H. Dederichs, Fermi-Dirac distribution in ab initio Green’s-function calculations. Phys. Rev. B 52 (1995) 11502. [CrossRef] [PubMed] [Google Scholar]
  58. R. Zeller, Towards a linear-scaling algorithm for electronic structure calculations with the tight-binding Korringa–Kohn–Rostoker Green function method. J. Phys.: Condens. Matter 20 (2008) 294215. [CrossRef] [Google Scholar]
  59. R. Zeller, P.H. Dederichs, B. Újfalussy, L. Szunyogh and P. Weinberger, Theory and convergence properties of the screened Korringa–Kohn–Rostoker method. Phys. Rev. B 52 (1995) 8807. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you