Open Access
Issue
ESAIM: M2AN
Volume 59, Number 3, May-June 2025
Page(s) 1627 - 1655
DOI https://doi.org/10.1051/m2an/2025032
Published online 18 June 2025
  1. N. Morley, S. Smolentsev, L. Barleon, I. Kirillov and M. Takahashi, Liquid magnetohydrodynamics-recent progress and future directions for fusion. Fusion Eng. Des. 51 (2000) 701–713. [CrossRef] [Google Scholar]
  2. A. Hadidi and D. Jalali-Vahid, Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field. Theor. Comput. Fluid Dyn. 30 (2016) 165–184. [CrossRef] [Google Scholar]
  3. C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179 (2003) 211–228. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Ki, Level set method for two-phase incompressible flows under magnetic fields. Comput. Phys. Commun. 181 (2010) 999–1007. [CrossRef] [Google Scholar]
  5. M.R. Ansari, A. Hadidi and M.E. Nimvari, Effect of a uniform magnetic field on dielectric two-phase bubbly flows using the level set method. J. Magn. Magn. Mater. 324 (2012) 4094–4101. [CrossRef] [Google Scholar]
  6. R.J. Thome, Effect of a transverse magnetic field on vertical two-phase flow through a rectangular channel. Argonne National Laboratory Report. ANL-6854 (1964). [Google Scholar]
  7. H. Su and G. Zhang, Highly efficient and energy stable schemes for the 2D/3D diffuse interface model of two-phase magnetohydrodynamics. J. Sci. Comput. 90 (2022) 1–31. [CrossRef] [Google Scholar]
  8. X. Zhang, Sharp-interface limits of the diffuse interface model for two-phase inductionless magnetohydrodynamic fluids. arXiv.2106.10433 (2021). [Google Scholar]
  9. J. Yang, S. Mao, X. He, X. Yang and Y. He, A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods Appl. Mech. Eng. 356 (2019) 435–464. [CrossRef] [Google Scholar]
  10. J. Zhang, H. Su and X. Feng, Gauge–Uzawa-based, highly efficient decoupled schemes for the diffuse interface model of two-phase magnetohydrodynamic. Commun. Nonlinear Sci. 126 (2023) 107477. [CrossRef] [Google Scholar]
  11. H. Su and G. Zhang, Energy stable schemes with second order temporal accuracy and decoupled structure for diffuse interface model of two-phase magnetohydrodynamics. Commun. Nonlinear Sci. 119 (2023) 107126. [CrossRef] [Google Scholar]
  12. J. Zhao, R. Chen and H. Su, An energy-stable finite element method for incompressible Magnetohydrodynamic-Cahn–Hilliard coupled model. Adv. Appl. Math. Mech. 13 (2021) 761–790. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Chen and T. Zhang, Unconditional stability and optimal error estimates of first order semi-implicit stabilized finite element method for two phase magnetohydrodynamic diffuse interface model. Appl. Math. Comput. 429 (2022) 127238. [Google Scholar]
  14. X. Shen and Y. Cai, Error estimates of time discretizations for a Cahn–Hilliard phase-field model for the two-phase magnetohydrodynamic flows. Appl. Numer. Math. 207 (2025) 585–607. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Wang, Y. Guo, F. Liu, H. Jia and C. Zhang, A fully decoupled linearized and second-order accurate numerical scheme for two-phase magnetohydrodynamic flows. Int. J. Numer. Methods Fluids 96 (2024) 482–509. [CrossRef] [Google Scholar]
  16. H. Qiu, Error analysis of fully discrete scheme for the Cahn–Hilliard–Magneto-Hydrodynamics problem. J. Sci. Comput. 95 (2023) 16. [CrossRef] [Google Scholar]
  17. C. Wang, J. Wang, S. Wise, Z. Xia and L. Xu, Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn–Hilliard–Magnetohydrodynamics system of equations. J. Comput. Appl. Math. 436 (2024) 115409. [CrossRef] [Google Scholar]
  18. J. Yang, S. Mao and X. He, Unconditionally optimal convergent zero-energy-contribution scheme for two phase mhd model. J. Sci. Comput. 102 (2025) 1–72. [CrossRef] [Google Scholar]
  19. G. Zhang, X. He and X. Yang, Fully decoupled, linear and unconditionally energy stable time discretization scheme for solving the magneto-hydrodynamic equations. J. Comput. Appl. Math. 369 (2019) 112636. [Google Scholar]
  20. X. Yang and G. Zhang, Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn–Hilliard and Allen–Cahn equations with general nonlinear potential. J Sci. Comput. 82 (2020) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258. [CrossRef] [Google Scholar]
  22. J. Shen and X. Yang, Energy stable schemes for Cahn–Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. B 31 (2010) 743–758. [CrossRef] [Google Scholar]
  23. A. Miranville, The Cahn–Hilliard Equation: Recent Advances and Applications. Society for Industrial and Applied Mathematics (2019). [Google Scholar]
  24. R.A. Adams, Sobolev Spaces. Academic Press (1975). [Google Scholar]
  25. F. Cheng and J. Shen, Stability and convergence analysis of rotational velocity correction methods for the Navier–Stokes equations. Adv. Comput. Math. 45 (2019) 3123–3136. [CrossRef] [MathSciNet] [Google Scholar]
  26. X. Yang, Efficient and energy stable scheme for the hydrodynamically coupled three components Cahn–Hilliard phase-field model using the stabilized-invariant energy quadratization (S-IEQ) approach. J. Comput. Phys. 438 (2021) 110342. [CrossRef] [Google Scholar]
  27. J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet] [Google Scholar]
  28. Z. Xu, X. Yang and H. Zhang, Error analysis of a decoupled, linear stabilization scheme for the Cahn–Hilliard model of two-phase incompressible flows. J Sci. Comput. 83 (2020) 1–27. [Google Scholar]
  29. C. Chen and X. Yang, Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn–Hilliard model. Comput. Methods Appl. Mech. Eng. 351 (2019) 35–59. [CrossRef] [Google Scholar]
  30. Z. Liu and X. Li, Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl. Math. Lett. 98 (2019) 206–214. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Chen and S. Gu, On novel linear schemes for the Cahn–Hilliard equation based on an improved invariant energy quadratization approach. J. Comput. Appl. Math. 414 (2022) 114405. [CrossRef] [Google Scholar]
  32. Z. Zhang and H. Tang, An adaptive phase field method for the mixture of two incompressible fluids. Comput. Fluids 36 (2007) 1307–1318. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you