Open Access
Issue
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
Page(s) 1973 - 2003
DOI https://doi.org/10.1051/m2an/2025040
Published online 17 July 2025
  1. D. Adak, D. Mora, S. Natarajan and A. Silgado, A virtual element discretization for the time dependent Navier– Stokes equations in stream-function vorticity formulation. ESAIM: M2AN 55 (2021) 2535–2566. [Google Scholar]
  2. J.-P. Aubin, Un théor `me de compacité. C. R. Acad. Sci. Paris 256 (1963) 5042–5044. [MathSciNet] [Google Scholar]
  3. I.A. Balushi, W. Jiang, G. Tsogtgerel and T.-Y. Kim, A posteriori analysis of a B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 371 (2020) 113317. [Google Scholar]
  4. C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier–Stokes equations and estimate of its dimension. Adv. Math. Sci. Appl. 4 (1994) 465–489. [Google Scholar]
  5. B. Bir, D. Goswami and A.K. Pani, Backward Euler method for the equations of motion arising in Oldroyd model of order one with nonsmooth initial data. IMA J Numer. Anal. 42 (2022) 3529–3570. [Google Scholar]
  6. H. Blum, R. Rannacher and R. Leis, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. [Google Scholar]
  7. J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124. [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer New York (2008). [Google Scholar]
  9. S.C. Brenner and L.-Y. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22 (2005) 83–118. [CrossRef] [Google Scholar]
  10. K. Bryan, A numerical investigation of a nonlinear model of a wind-driven ocean. J. Atm. Sci. 20 (1963) 594–606. [Google Scholar]
  11. M.D. Chekroun, Y. Hong and R.M. Temam, Enriched numerical scheme for singularly perturbed barotropic quasi-geostrophic equations. J. Comp. Phy. 416 (2020) 109493. [Google Scholar]
  12. V. Dymnikov, C. Kazantsev and E. Kazantsev, On the “genetic memory” of chaotic attractor of the barotropic ocean model. Chaos Solitons Fractals 11 (2000) 507–532. [Google Scholar]
  13. A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: Math. Model. Numer. Anal. 51 (2017) 1367–1385. [Google Scholar]
  14. E.L. Foster, T. Iliescu and Z. Wang, A finite element discretization of the stream function formulation of the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 261, 262 (2013) 105–117. [Google Scholar]
  15. E.L. Foster, T. Iliescu and D. Wells, A two-level finite element discretization of the stream function formulation of the stationary quasi-geostrophic equations of the ocean. Comput. Math. Appl. 66 (2013) 1261–1271. [Google Scholar]
  16. E.L. Foster, T. Iliescu and D. Wells, A conforming finite element discretization of the stream function form of the unsteady quasi-geostrophic equations. Int. J. Numer. Anal. Model. 13 (2016) 951–968. [Google Scholar]
  17. W. Jiang and T.-Y. Kim, Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries. Comput. Methods Appl. Mech. Eng. 299 (2016) 144–160. [Google Scholar]
  18. S. Kesavan, Topics in Functional Analysis and Applications. Wiley (1989). [Google Scholar]
  19. T.-Y. Kim, T. Iliescu and E. Fried, B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 286 (2015) 168–191. [Google Scholar]
  20. T.-Y. Kim, E.-J. Park and D.-w. Shin, A C0-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 300 (2016) 225–244. [Google Scholar]
  21. D. Kim, T.-Y. Kim, E.-J. Park and D.-w. Shin, Error estimates of B-spline based finite-element methods for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 335 (2018) 255–272. [Google Scholar]
  22. D. Kim, A.K. Pani and E.-J. Park, Morley finite element methods for the stationary quasi-geostrophic equation. Comput. Methods Appl. Mech. Eng. 375 (2021) 113639. [Google Scholar]
  23. R.C. Kirby and L. Mitschell, Code generation for generally mapped finite elements. ACM Trans. Math. Softw. 45 (2019) 41. [Google Scholar]
  24. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd edition. Gordon and Breach, New York (1969). [Google Scholar]
  25. G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. [Google Scholar]
  26. J. McWilliams, Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, Cambridge (2006). [Google Scholar]
  27. T.T. Medjo, Pullback attractors for the multi-layer quasi-geostrophic equations of the ocean. Nonlinear Anal. Real World Appl. 17 (2014) 365–382. [Google Scholar]
  28. D. Mora and A. Silgado, A C1 virtual element method for the stationary quasi-geostrophic equations of the ocean. Comput. Math. Appl. 116 (2022) 212–228. [Google Scholar]
  29. M. Muresan, A Concrete Approach to Classical Analysis. CMS Books in Mathematics. Springer, New York (2009). [Google Scholar]
  30. A.K. Pany, S.K. Paikray, S. Padhy and A.K. Pani, Backward Euler schemes for the Kelvin-Voigt viscoelastic fluid flow model. Int. J. Numer. Anal. Model. 14 (2017) 126–151. [Google Scholar]
  31. J. Pedlosky, Geophysical Fluid Dynamics. Springer Science & Business Media, New York (2013). [Google Scholar]
  32. N. Rotundo, T.-Y. Kim, W. Jiang, L. Heltai and E. Fried, Error analysis of a B-spline based finite-element method for modeling wind-driven ocean circulation. J. Sci. Comput. 69 (2016) 430–459. [Google Scholar]
  33. D.-W. Shin, Y. Kang and E.-J. Park, C0-discontinuous Galerkin methods for a wind-driven ocean circulation model: two-grid algorithm. Comput. Methods Appl. Mech. Eng. 328 (2018) 321–339. [Google Scholar]
  34. H.U. Sverdrup, Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern pacific. Proc. Natl. Acad. Sci. USA 33 (1947) 318–326. [Google Scholar]
  35. R. Temam, Attractors of the Dissipative Evolution Equation of the First Order in Time: Reaction–Diffusion Equations. Fluid Mechanics and Pattern Formation Equations. Springer New York, New York, NY (1997) 82–178. [Google Scholar]
  36. G.K. Vallis, Atmosphere and Ocean Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, Cambridge (2006). [Google Scholar]
  37. G. Veronis, Wind-driven ocean circulation – part 2. Numerical solutions of the non-linear problem. Deep Sea Res. Oceanographic Abstracts 13 (1966) 31–55. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you