Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 2005 - 2019 | |
DOI | https://doi.org/10.1051/m2an/2025047 | |
Published online | 17 July 2025 |
- M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Vol. 55 of National Bureau of Standards Applied Mathematics Series. Washington, DC (1964). [Google Scholar]
- D.N. Arnold and R.S. Falk, Edge effects in the Reissner–Mindlin plate theory, in Analytic and Computational Models of Shells, edited by A.K. Noor, T. Belytschhko and J. Simo. A.S.M.E., New York (1989) 71–90. [Google Scholar]
- D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276–1290. [Google Scholar]
- D.N. Arnold and R.S. Falk, The boundary layer for the Reissner–Mindlin plate model. SIAM J. Math. Anal. 21 (1990) 281–312. [Google Scholar]
- D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). [Google Scholar]
- D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edition. Cambridge University Press, Cambridge (2007). [Google Scholar]
- F. Brezzi and M. Fortin, Numerical approximation of Mindlin–Reissner plates. Math. Comput. 47 (1986) 151–158. [Google Scholar]
- C. Carstensen, Residual-based a posteriori error estimate for a nonconforming Reissner–Mindlin plate finite element. SIAM J. Numer. Anal. 39 (2002) 2034–2044. [Google Scholar]
- C. Carstensen and J. Hu, A posteriori error analysis for conforming MITC elements for Reissner–Mindlin plates. Math. Comput. 77 (2008) 611–632. [Google Scholar]
- C. Carstensen and J. Schöberl, Residual-based a posteriori error estimate for a mixed Reißner–Mindlin plate finite element method. Numer. Math. 103 (2006) 225–250. [Google Scholar]
- C. Carstensen and K. Weinberg, Adaptive mixed finite element method for Reissner–Mindlin plate. Comput. Methods Appl. Mech. Eng. 190 (2001) 6895–6908. [Google Scholar]
- C. Carstensen and K. Weinberg, An adaptive non-conforming finite-element method for Reissner–Mindlin plates. Int. J. Numer. Methods Eng. 56 (2003) 2313–2330. [Google Scholar]
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Autom. Inf. Recherche Opérationnelle Sér. Rouge 7 (1973) 33–75. [Google Scholar]
- D. Gallistl and M. Schedensack, A robust discretization of the Reissner–Mindlin plate with arbitrary polynomial degree. J. Comput. Math. 38 (2020) 1–13. [Google Scholar]
- D. Gallistl and M. Schedensack, Taylor–Hood discretization of the Reissner–Mindlin plate. SIAM J. Numer. Anal. 59 (2021) 1195–1217. [Google Scholar]
- J. Hu and Y. Huang, A posteriori error analysis of finite element methods for Reissner–Mindlin plates. SIAM J. Numer. Anal. 47 (2010) 4446–4472. [Google Scholar]
- A. Rössle and A.-M. S¨andig, Corner singularities and regularity results for the Reissner/Mindlin plate model. J. Elasticity 103 (2011) 113–135. [Google Scholar]
- M. Schedensack, A new generalization of the P1 non-conforming FEM to higher polynomial degrees. Comput. Methods Appl. Math. 17 (2017) 161–185. [Google Scholar]
- R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation. Numer. Math. 78 (1998) 479–493. [Google Scholar]
- R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.