Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 2055 - 2079 | |
DOI | https://doi.org/10.1051/m2an/2025046 | |
Published online | 23 July 2025 |
- A. Abdulle, A. Barth and C. Schwab, Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Multiscale Model. Simul. 11 (2013) 1033–1070. [Google Scholar]
- R. Altmann and D. Peterseim, Localized computation of eigenstates of random Schrödinger operators. SIAM J. Sci. Comput. 41 (2019) B1211–B1227. [Google Scholar]
- R. Altmann, P. Henning and D. Peterseim, Numerical homogenization beyond scale separation. Acta Numer. 30 (2021) 1–86. [CrossRef] [MathSciNet] [Google Scholar]
- A. Anantharaman and C. Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization. Multiscale Model. Simul. 9 (2011) 513–544. [Google Scholar]
- A. Anantharaman and C. Le Bris, Elements of mathematical foundations for numerical approaches for weakly random homogenization problems. Commun. Comput. Phys. 11 (2012) 1103–1143. [Google Scholar]
- I. Babuška and J.E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52 (1989) 275–297. [Google Scholar]
- I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis. Vol. II. North-Holland, Amsterdam (1991) 641–787. [Google Scholar]
- I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. [Google Scholar]
- U. Banerjee and J.E. Osborn, Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735–762. [Google Scholar]
- A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119 (2011) 123–161. [CrossRef] [MathSciNet] [Google Scholar]
- D.L. Brown and V.H. Hoang, A hierarchical finite element Monte Carlo method for stochastic two-scale elliptic equations. J. Comput. Appl. Math. 323 (2017) 16–35. [Google Scholar]
- F. Chatelin, Spectral approximation of linear operators, in Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983). With a foreword by P. Henrici, With solutions to exercises by Mario Ahués. [Google Scholar]
- P.G. Ciarlet and J.L. Lions, editors. Handbook of Numerical Analysis. Vol. VIII. North-Holland, Amsterdam (2002). [Google Scholar]
- K.A. Cliffe, M.B. Giles, R. Scheichl and A.L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14 (2011) 3–15. [CrossRef] [MathSciNet] [Google Scholar]
- M.K. Deb, I.M. Babuška and J.T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190 (2001) 6359–6372. [Google Scholar]
- M. Elasmi, F. Krumbiegel and R. Maier, Neural numerical homogenization based on deep ritz corrections. Preprint arXiv:2411.14084 (2024). [Google Scholar]
- D. Elfverson, V. Ginting and P. Henning, On multiscale methods in Petrov-Galerkin formulation. Numer. Math. 131 (2015) 643–682. [CrossRef] [MathSciNet] [Google Scholar]
- C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153. [Google Scholar]
- L.C. Evans, Partial Differential Equations. Vol. 19 of Graduate Studies in Mathematics, 2nd edition. American Mathematical Society, Providence, RI (2010). [Google Scholar]
- M.D. Gunzburger, C.G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23 (2014) 521–650. [Google Scholar]
- M. Hauck and D. Peterseim, Super-localization of elliptic multiscale problems. Math. Comput. 92 (2023) 981–1003. [Google Scholar]
- F. Hellman and T. Keil, Gridlod. GitHub repository, https://github.com/fredrikhellman/gridlod (2019). [Google Scholar]
- P. Henning and A. Målqvist, Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput. 36 (2014) A1609–A1634. [Google Scholar]
- T. Kato, Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition. [Google Scholar]
- D. Kolombage, Random-perturbations-evp. Updated preprint version. Software, https://doi.org/10.5281/zenodo.14243509 (2025). [Google Scholar]
- F.Y. Kuo, C. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 3351–3374. [Google Scholar]
- C. Le Bris, F. Legoll and F. Thomines, Multiscale finite element approach for “weakly” random problems and related issues. ESAIM Math. Model. Numer. Anal. 48 (2014) 815–858. [Google Scholar]
- M. Lewin and E. Séré, Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators). Proc. Lond. Math. Soc. 100 (2010) 864–900. [Google Scholar]
- X. Llobet, K. Appert, A. Bondeson and J. Vaclavik, On spectral pollution. Comput. Phys. Comm. 59 (1990) 199–216. [Google Scholar]
- A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. [Google Scholar]
- A. Målqvist and D. Peterseim, Computation of eigenvalues by numerical upscaling. Numer. Math. 130 (2015) 337–361. [Google Scholar]
- A. Målqvist and D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposition. Vol. 5 of SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2021). [Google Scholar]
- A. Målqvist and B. Verfürth, An offline-online strategy for multiscale problems with random defects. ESAIM Math. Model. Numer. Anal. 56 (2022) 237–260. [Google Scholar]
- H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59 (2017) 99–149. [Google Scholar]
- D. Peterseim and M. Schedensack, Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. 72 (2017) 1196–1213. [Google Scholar]
- G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs, NJ (1973). [Google Scholar]
- B. Verfürth, Gridlod-random-perturbations. GitHub repository, https://github.com/BarbaraV/gridlod-random-perturbations (2021). [Google Scholar]
- H. Xie, L. Zhang and H. Owhadi, Fast eigenpairs computation with operator adapted wavelets and hierarchical subspace correction. SIAM J. Numer. Anal. 57 (2019) 2519–2550. [Google Scholar]
- Z. Zhang, M. Ci and T.Y. Hou, A multiscale data-driven stochastic method for elliptic PDEs with random coefficients. Multiscale Model. Simul. 13 (2015) 173–204. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.