Open Access
Issue
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
Page(s) 2171 - 2206
DOI https://doi.org/10.1051/m2an/2025049
Published online 31 July 2025
  1. F.L. Bakharev, S.G. Matveenko and S.A. Nazarov, The discrete spectrum of cross-shaped waveguides. St. Petersburg Math. J. 28 (2017) 171–180. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs. Vol. 186. American Mathematical Society (AMS), Providence (2013). [Google Scholar]
  3. M.S. Birman and M.Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Space. Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987). [Google Scholar]
  4. D. Borisov and K. Pankrashkin, Quantum waveguides with small periodic perturbations: gaps and edges of brillouin zones. J. Phys. A Math. Theor. 46 (2013) 235203. [Google Scholar]
  5. C. Cacciapuoti and P. Exner, Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide. J. Phys. A Math. Theor. 40 (2007) f511–g523. [Google Scholar]
  6. L. Chesnel and S.A. Nazarov, Spectrum of the Dirichlet Laplacian in a thin cubic lattice. Math. Model. Numer. Anal. 57 (2023) 3251–3273. [Google Scholar]
  7. L. Chesnel and V. Pagneux, Simple examples of perfectly invisible and trapped modes in waveguides. Quart. J. Mech. Appl. Math. 71 (2018) 297–315. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Chesnel, S.A. Nazarov and V. Pagneux, Invisibility and perfect reflectivity in waveguides with finite length branches. SIAM J. Appl. Math. 78 (2018) 2176–2199. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Vol. 22 of Advances in Design and Control, 2nd edition. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011). [Google Scholar]
  10. P. Exner and H. Kovařík, Quantum Waveguides. Springer, Cham (2015). [Google Scholar]
  11. A.K. Geim, Graphene: status and prospects. Science 324 (2009) 1530–1534. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  12. A.K. Geim and K.S. Novoselov, The rise of graphene. Nat. Mater. 6 (2007) 183–191. [CrossRef] [PubMed] [Google Scholar]
  13. I.M. Gelfand, Expansion in characteristic functions of an equation with periodic coefficients, in Doklady Akad. Nauk SSSR (NS). Vol. 73 (1950) 1117–1120. [Google Scholar]
  14. D. Grieser, Spectra of graph neighborhoods and scattering. Proc. Lond. Math. Soc. 97 (2008) 718–752. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Grieser, Thin tubes in mathematical physics, global analysis and spectral geometry, in Analysis on Graphs and its Applications. Selected Papers Based on the INI Programme. Cambridge, UK, January 8–June 29, 2007 (2008) 565–593. [Google Scholar]
  16. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Boston (2006). [Google Scholar]
  18. A. Henrot and M. Pierre, Shape Variation and Optimization. A Geometrical Analysis. Vol. 28 of EMS Tracts in Mathematics European Mathematical Society (EMS), Zürich (2018). [Google Scholar]
  19. T. Kato, Perturbation Theory for Linear Operators. Springer, Berlin, reprint of the corr. print. of the 2nd edition. 1980 edition (1995). [Google Scholar]
  20. A.I. Korolkov, S.A. Nazarov and A.V. Shanin, Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves. Z. Angew. Math. Mech. 96 (2016) 1245–1260. [Google Scholar]
  21. V.A. Kozlov, V.G. Maz’ya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities. Vol. 52 of Mathematical Surveys and Monographs. AMS, Providence (1997). [Google Scholar]
  22. P.A. Kuchment, Floquet theory for partial differential equations. Russ. Math. Surv. 37 (1982) 1. [CrossRef] [Google Scholar]
  23. P.A. Kuchment, Floquet Theory for Partial Differential Equations. Vol. 60. Springer, Basel (1993). [Google Scholar]
  24. P. Kuchment, Graph models for waves in thin structures. Waves Random Media 12 (2002) R1. [CrossRef] [Google Scholar]
  25. P. Kuchment, Quantum graphs: an introduction and a brief survey, in Analysis on Graphs and its Applications. Selected papers based on the INI Programme. Cambridge, UK, January 8–June 29, 2007. American Mathematical Society (AMS), Providence (2008) 291–312. [Google Scholar]
  26. P. Kuchment and O. Post, On the spectra of carbon nano-structures. Commun. Math. Phys. 275 (2007) 805–826. [Google Scholar]
  27. P. Kuchment and H. Zeng, Asymptotics of spectra of Neumann laplacians in thin domains. Contemp. Math. 327 (2003) 199–214. [CrossRef] [Google Scholar]
  28. J.P. Lee-Thorp, M.I. Weinstein and Y. Zhu, Elliptic operators with honeycomb symmetry: dirac points, edge states and applications to photonic graphene. Arch. Ration. Mech. Anal. 232 (2019) 1–63. [Google Scholar]
  29. V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevski˘ı, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols. 1, 2. Birkhäuser, Basel (2000). [Google Scholar]
  30. S. Molchanov and B. Vainberg, Scattering solutions in networks of thin fibers: small diameter asymptotics. Commun. Math. Phys. 273 (2007) 533–559. [CrossRef] [Google Scholar]
  31. S. Molchanov and B. Vainberg, Laplace operator in networks of thin fibers: spectrum near the threshold, in Stochastic Analysing in Mathematical Physics. Proceedings of a Satellite Conference of ICM 2006, Lisbon, Portugal, September 4–8, 2006. Selected Papers (2008) 69–94. [Google Scholar]
  32. S.A. Nazarov, Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains, in Sobolev Spaces in Mathematics II. Springer, New York (2009) 261–309. [Google Scholar]
  33. S.A. Nazarov, Opening of a gap in the continuous spectrum of a periodically perturbed waveguide. Math. Notes 87 (2010) 738–756. [Google Scholar]
  34. S.A. Nazarov, Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder. Comput. Math. Math. Phys. 54 (2014) 1261–1279. [CrossRef] [MathSciNet] [Google Scholar]
  35. S.A. Nazarov, Almost standing waves in a periodic waveguide with resonator, and near-threshold eigenvalues. Algebra i Analiz 28 (2016) 110–160. (English transl. Sb. Math. J. 28 (2017) 377–410). [Google Scholar]
  36. S.A. Nazarov, Transmission conditions in one-dimensional model of a rectangular lattice of thin quantum waveguides. J. Math. Sci. 219 (2016) 994–1015. [CrossRef] [MathSciNet] [Google Scholar]
  37. S.A. Nazarov, The spectra of rectangular lattices of quantum waveguides. Izv. Math. 81 (2017) 29. [CrossRef] [MathSciNet] [Google Scholar]
  38. S.A. Nazarov, Breakdown of cycles and the possibility of opening spectral gaps in a square lattice of thin acoustic waveguides. Izv. Math. 82 (2018) 1148–1195. [CrossRef] [MathSciNet] [Google Scholar]
  39. S.A. Nazarov, Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides. Izv. Math. 84 (2020) 1105. [Google Scholar]
  40. S.A. Nazarov, Waveguide with double threshold resonance at a simple threshold. Sb. Math. 211 (2020) 1080. [Google Scholar]
  41. S.A Nazarov, On the one-dimensional asymptotic models of thin Neumann lattices. Sib. Math. J. 64 (2023) 356–373. [CrossRef] [MathSciNet] [Google Scholar]
  42. S.A. Nazarov, Gaps in the spectrum of thin waveguides with periodically locally deformed walls. Comput. Math. Math. Phys. 64 (2024) 99–117. [Google Scholar]
  43. S.A. Nazarov and B.A. Plamenevski˘ı, Elliptic Problems in Domains with Piecewise Smooth Boundaries. Vol. 13 of Expositions in Mathematics. De Gruyter, Berlin (1994). [Google Scholar]
  44. S.A. Nazarov, K. Ruotsalainen and P.J. Uusitalo, Scattering coefficients and threshold resonances in a waveguide with inflating resonator. Zap. N. S. POMI 506 (2021) 175–209. [Google Scholar]
  45. C. Neto, F. Guinea, N. Peres, K.S. Novoselov and A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81 (2009) 109. [Google Scholar]
  46. K. Pankrashkin, Eigenvalue inequalities and absence of threshold resonances for waveguide junctions. J. Math. Anal. Appl. 449 (2017) 907–925. [CrossRef] [MathSciNet] [Google Scholar]
  47. L. Pauling, The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys. 4 (1936) 673–677. [NASA ADS] [CrossRef] [Google Scholar]
  48. O. Post, Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case. J. Phys. A Math. Theor. 38 (2005) 4917. [Google Scholar]
  49. O. Post, Spectral Analysis on Graph-Like Spaces. Vol. 2039. Springer, Heidelberg (2012). [Google Scholar]
  50. J.H. Poynting, On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond. 36 (1884) 343–361. [Google Scholar]
  51. M.M. Skriganov, Geometric and Arithmetic Methods in the Spectral Theory of Multidimensional Periodic Operators. Vol. 171 (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you