Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 2207 - 2251 | |
DOI | https://doi.org/10.1051/m2an/2025052 | |
Published online | 31 July 2025 |
- A. Alfonsi and V. Bally, A generic construction for high order approximation schemes of semigroups using random grids. Numer. Math. 148 (2021) 743–793. [Google Scholar]
- J. Barré, P. Dobson, M. Ottobre and E. Zatorska, Fast non-mean-field networks: uniform in time averaging. SIAM J. Math. Anal. 53 (2021) 937–972. [Google Scholar]
- N. Bou-Rabee and A. Eberle, Mixing time guarantees for unadjusted Hamiltonian Monte Carlo. Bernoulli 29 (2023) 75–104. [CrossRef] [MathSciNet] [Google Scholar]
- C.-E. Bréhier, Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by spacetime white noise. Potential Anal. 40 (2014) 1–40. [CrossRef] [MathSciNet] [Google Scholar]
- C.-E. Bréhier, Approximation of the invariant distribution for a class of ergodic SDEs with one-sided Lipschitz continuous drift coefficient using an explicit tamed Euler scheme. ESAIM: Probab. Stat. 27 (2023) 841–866. [Google Scholar]
- E. Buckwar, A. Samson, M. Tamborrino and I. Tubikanec, A splitting method for SDEs with locally Lipschitz drift: illustration on the FitzHugh–Nagumo model. Appl. Numer. Math. 179 (2022) 191–220. [CrossRef] [MathSciNet] [Google Scholar]
- T. Cass, D. Crisan, P. Dobson and M. Ottobre, Long-time behaviour of degenerate diffusions: UFG-type SDEs and time-inhomogeneous hypoelliptic processes. Electron. J. Probab. 26 (2021) 1–72. [CrossRef] [MathSciNet] [Google Scholar]
- M.M. Castro, D. Chemnitz, H. Chu, M. Engel, J.S. Lamb and M. Rasmussen, The Lyapunov spectrum for conditioned random dynamical systems. Preprint arXiv:2204.04129 (2022). [Google Scholar]
- D. Crisan and M. Ottobre, Pointwise gradient bounds for degenerate semigroups (of UFG type). Proc. R. Soc. A: Math. Phys. Eng. Sci. 472 (2016) 20160442. [Google Scholar]
- D. Crisan, P. Dobson and M. Ottobre, Uniform in time estimates for the weak error of the Euler method for SDEs and a pathwise approach to derivative estimates for diffusion semigroups. Trans. Am. Math. Soc. 374 (2021) 3289–3330. [CrossRef] [Google Scholar]
- D. Crisan, P. Dobson, B. Goddard, M. Ottobre and I. Souttar, Poisson equations with locally-Lipschitz coefficients and uniform in time averaging for stochastic differential equations via strong exponential stability. Preprint arXiv:2204.02679 (2022). [Google Scholar]
- P. Del Moral and S.S. Singh, Backward Itô–Ventzell and stochastic interpolation formulae. Stoch. Process. App. 154 (2022) 197–250. [Google Scholar]
- A.B. Duncan, N. Nüsken and G.A. Pavliotis, Using perturbed underdamped langevin dynamics to efficiently sample from probability distributions. J. Stat. Phys. 169 (2017) 1098–1131. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- D.J. Higham, X. Mao and A.M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40 (2002) 1041–1063. [CrossRef] [MathSciNet] [Google Scholar]
- L. Hu, X. Li and X. Mao, Convergence rate and stability of the truncated Euler–Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 337 (2018) 274–289. [Google Scholar]
- M. Hutzenthaler, A. Jentzen and P.E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22 (2012) 1611–1641. [MathSciNet] [Google Scholar]
- C. Kelly and G.J. Lord, Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38 (2018) 1523–1549. [CrossRef] [MathSciNet] [Google Scholar]
- P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Vol. 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin (1992). ISBN 3-540-54062-8. [Google Scholar]
- D. Lamberton and G. Pages, Recursive computation of the invariant distribution of a diffusion: the case of a weakly mean reverting drift. Stoch. Dyn. 3 (2003) 435–451. [Google Scholar]
- W. Liu, X. Mao and Y. Wu, The backward Euler–Maruyama method for invariant measures of stochastic differential equations with super-linear coefficients. Appl. Numer. Math. 184 (2023) 137–150. [Google Scholar]
- L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups. Chapman and Hall/CRC (2006). [Google Scholar]
- J.C. Mattingly, A.M. Stuart and D.J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. App. 101 (2002) 185–232. [Google Scholar]
- G. Pages and F. Panloup, Unadjusted Langevin algorithm with multiplicative noise: total variation and Wasserstein bounds. Ann. Appl. Probab. 33 (2023) 726–779. [Google Scholar]
- S. Sabanis, Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26 (2016) 2083–2105. [Google Scholar]
- K. Schuh and I. Souttar, Conditions for uniform in time convergence: applications to averaging, numerical discretisations and mean-field systems. Preprint arXiv:2412.05239 (2024). [Google Scholar]
- K. Schuh and P.A. Whalley, Convergence of kinetic Langevin samplers for non-convex potentials. Preprint arXiv:2405.09992 (2024). [Google Scholar]
- G. Stoltz and E. Vanden-Eijnden, Longtime convergence of the temperature-accelerated molecular dynamics method. Nonlinearity 31 (2018) 3748. [Google Scholar]
- D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. App. 8 (1990) 483–509. [Google Scholar]
- M.V. Tretyakov and Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51 (2013) 3135–3162. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.