Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 2305 - 2327 | |
DOI | https://doi.org/10.1051/m2an/2025050 | |
Published online | 06 August 2025 |
- D. Antonopoulou, L. Baňas, R. Nürnberg and A. Prohl, Numerical approximation of the stochastic Cahn–Hilliard equation near the sharp interface limit. Numer. Math. 147 (2021) 505–551. [Google Scholar]
- H. Bauke and S. Mertens, Random numbers for large-scale distributed Monte Carlo simulations. Phys. Rev. E 75 (2007) 066701. [Google Scholar]
- M. Beccari, M. Hutzenthaler, A. Jentzen, R. Kurniawan, F. Lindner and D. Salimova, Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities. Preprint arXiv:1903.06066 (2019). [Google Scholar]
- S. Becker and A. Jentzen, Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg–Landau equations. Stoch. Process. Appl. 129 (2019) 28–69. [Google Scholar]
- S. Becker, B. Gess, A. Jentzen and P.E. Kloeden, Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen–Cahn equations. Stoch. Part. Differ. Equ.: Anal. Comput. 11 (2023) 211–268. [Google Scholar]
- D. Blömker and A. Jentzen, Galerkin approximations for the stochastic Burgers equation. SIAM J. Numer. Anal. 51 (2013) 694–715. [Google Scholar]
- A. Bouchriti, M. Pierre and N.E. Alaa, Remarks on the asymptotic behavior of scalar auxiliary variable (SAV) schemes for gradient-like flows. J. Appl. Anal. Comput. 10 (2020) 2198–2219. [Google Scholar]
- C.-E. Bréhier and L. Goudenége, Analysis of some splitting schemes for the stochastic Allen–Cahn equation. Discrete Contin. Dyn. Syst. B 24 (2019) 4169–4190. [Google Scholar]
- C.-E. Bréhier and L. Goudenège, Weak convergence rates of splitting schemes for the stochastic Allen–Cahn equation. BIT Numer. Math. 60 (2020) 543–582. [Google Scholar]
- C.-E. Bréhier, J. Cui and J. Hong, Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation. IMA J. Numer. Anal. 39 (2019) 2096–2134. [CrossRef] [MathSciNet] [Google Scholar]
- D. Breit and A. Prohl, Weak error analysis for the stochastic Allen–Cahn equation. Stoch. Part. Differ. Equ.: Anal. Comput. 12 (2024) 2181–2245. [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2002). [Google Scholar]
- M. Cai, S. Gan and X. Wang, Weak convergence rates for an explicit full-discretization of stochastic Allen–Cahn equation with additive noise. J. Sci. Comput. 86 (2021) 34. [Google Scholar]
- E. Campillo-Funollet, G. Grün and F. Klingbeil, On modeling and simulation of electrokinetic phenomena in two-phase flow with general mass densities. SIAM J. Appl. Math. 72 (2012) 1899–1925. [Google Scholar]
- Q. Cheng, C. Liu and J. Shen, A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367 (2020) 113070. [Google Scholar]
- J. Cui, J. Hong and L. Sun, Semi-implicit energy-preserving numerical schemes for stochastic wave equation via SAV approach. Preprint arXiv:2208.13394 (2022). [Google Scholar]
- A. de Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96 (2004) 733–770. [Google Scholar]
- C.M. Elliott and A.M. Stuart, The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30 (1993) 1622–1663. [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer Series in Applied Mathematical Sciences. Vol. 159. Springer, New York, US-NY (2004). [Google Scholar]
- D.J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Lib. 529 (1998) 39–46. [Google Scholar]
- E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids. Springer-Verlag GmbH (2017). [Google Scholar]
- X. Feng, Y. Li and Y. Zhang, Finite element methods for the stochastic Allen–Cahn equation with gradient-type multiplicative noise. SIAM J. Numer. Anal. 55 (2017) 194–216. [Google Scholar]
- G. Grün and F. Klingbeil, Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, Part A (2014) 708–725. [Google Scholar]
- G. Grün, F Guillén-González and S. Metzger, On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities. Commun. Comput. Phys. 19 (2016) 1473–1502. [Google Scholar]
- I. Gyöngy and A. Millet, Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal. 30 (2009) 29–64. [Google Scholar]
- I. Gyöngy, S. Sabanis and D. Šiška, Convergence of tamed Euler schemes for a class of stochastic evolution equations. Stoch. Part. Differ. Equ.: Anal. Comput. 4 (2016) 225–245. [Google Scholar]
- E. Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147 (2002) 485–516. [Google Scholar]
- E. Hausenblas, Approximation for semilinear stochastic evolution equations. Potential Anal. 18 (2003) 141–186. [Google Scholar]
- D. Hou, M. Azaiez and C. Xu, A variant of scalar auxiliary variable approaches for gradient flows. J. Comput. Phys. 395 (2019) 307–332. [Google Scholar]
- C. Huang and J. Shen, Stability and convergence analysis of a fully discrete semi-implicit scheme for stochastic Allen–Cahn equations with multiplicative noise. Math. Comput. 92 (2023) 2685–2713. [Google Scholar]
- M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Amer. Math. Soc. 236 (2015). [Google Scholar]
- M. Hutzenthaler and A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients. Ann. Probab. 48 (2020) 53–93. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hutzenthaler, A. Jentzen and P.E. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011) 1563–1576. [MathSciNet] [Google Scholar]
- A. Jentzen and P. Pušnik, Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. IMA J. Numer. Anal. 40 (2020) 1005–1050. [Google Scholar]
- A. Jentzen, P. Kloeden and G. Winkel, Efficient simulation of nonlinear parabolic SPDEs with additive noise. Ann. Appl. Probab. 21 (2011) 908–950. [Google Scholar]
- M. Kovács, S. Larsson and F. Lindgren, On the backward Euler approximation of the stochastic Allen–Cahn equation. J. Appl. Probab. 52 (2015) 323–338. [CrossRef] [MathSciNet] [Google Scholar]
- M. Kovács, S. Larsson and F. Lindgren, On the discretisation in time of the stochastic Allen–Cahn equation. Math. Nachr. 291 (2018) 966–995. [Google Scholar]
- R. Kruse and R. Weiske, The BDF2-Maruyama method for the stochastic Allen–Cahn equation with multiplicative noise. J. Comput. Appl. Math. 419 (2023) 114634. [Google Scholar]
- K.F. Lam and R. Wang, Stability and convergence of relaxed scalar auxiliary variable schemes for Cahn–Hilliard systems with bounded mass source. J. Numer. Math. 32 (2024) 233–255. [Google Scholar]
- Z. Liu and X. Li, The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42 (2020) B630–B655. [Google Scholar]
- Z. Liu and Z. Qiao, Strong approximation of monotone stochastic partial differential equations driven by white noise. IMA J. Numer. Anal. 40 (2019) 1074–1093. [Google Scholar]
- Z. Liu and Z. Qiao, Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise. Stoch. Part. Differ. Equ.: Anal. Comput. 9 (2021) 559–602. [Google Scholar]
- A.K. Majee and A. Prohl, Optimal strong rates of convergence for a space-time discretization of the stochastic Allen–Cahn equation with multiplicative noise. Comput. Methods Appl. Math. 18 (2018) 297–311. [Google Scholar]
- S. Metzger, A convergent finite element scheme for a fourth-order liquid crystal model. IMA J. Numer. Anal. 42 (2022) 440–486. [Google Scholar]
- S. Metzger, A convergent SAV scheme for Cahn–Hilliard equations with dynamic boundary conditions. IMA J. Numer. Anal. 43 (2023) 3593–3627. [Google Scholar]
- S. Metzger, A convergent stochastic scalar auxiliary variable method. IMA J. Numer. Anal. (2024). DOI: 10.1093/imanum/drae065. [Google Scholar]
- S. Metzger, A convergent augmented SAV scheme for stochastic Cahn–Hilliard equations with dynamic boundary conditions describing contact line tension. Interfaces Free Bound. (2025) 64. [Google Scholar]
- R. Qi and X. Wang, Optimal error estimates of Galerkin finite element methods for stochastic Allen–Cahn equation with additive noise. J. Sci. Comput. 80 (2019) 1171–1194. [Google Scholar]
- X. Qi, M. Azaiez, C. Huang and C. Xu, An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise. AIMS Math. 7 (2022) 20684–20710. [Google Scholar]
- J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56 (2018) 2895–2912. [Google Scholar]
- J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353 (2018) 407–416. [CrossRef] [MathSciNet] [Google Scholar]
- O. Sieber, Analysis and numerics of two-phase flows of active liquid crystals with willmore-type interfacial energy: a micro-macro approach. Doctoral Thesis, Friedrich–Alexander–Universit¨at Erlangen–Nürnberg, Erlangen, 2021, 255. [Google Scholar]
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics. Vol. 25. Springer, Berlin, Heidelberg, DE (2006). [Google Scholar]
- X. Wang, An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation. Stoch. Process. Appl. 130 (2020) 6271–6299. [Google Scholar]
- X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327 (2016) 294–316. [CrossRef] [MathSciNet] [Google Scholar]
- X. Yang and H. Yu, Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J. Sci. Comput. 40 (2018) B889–B914. [Google Scholar]
- X. Yang and G.-D. Zhang, Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn–Hilliard and Allen–Cahn equations with general nonlinear potential. J. Sci. Comput. 82 (2020) 55. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.