Open Access
| Issue |
ESAIM: M2AN
Volume 59, Number 5, September-October 2025
|
|
|---|---|---|
| Page(s) | 2809 - 2836 | |
| DOI | https://doi.org/10.1051/m2an/2025076 | |
| Published online | 15 October 2025 | |
- D.N. Arnold, Finite Element Exterior Calculus. SIAM (2018). [Google Scholar]
- L.B. da Veiga, F. Dassi, D.A. Di Pietro and J. Droniou, Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes. Comput. Methods Appl. Mech. Eng. 397 (2022) 115061. [Google Scholar]
- V. John, A. Linke, C. Merdon, M. Neilan and L.G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. [CrossRef] [MathSciNet] [Google Scholar]
- A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 311 (2016) 304–326. [CrossRef] [Google Scholar]
- R.S. Falk and M. Neilan, Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51 (2013) 1308–1326. [CrossRef] [MathSciNet] [Google Scholar]
- P.L. Lederer, A. Linke, C. Merdon and J. Schöberl, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55 (2017) 1291–1314. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Science & Business Media. Vol. 15 (2012). [Google Scholar]
- A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268 (2014) 782–800. [CrossRef] [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
- D.A. Di Pietro and R. Tittarelli, An introduction to hybrid high-order methods, in Numerical Methods for PDEs. Springer International Publishing, Cham (2018) 75–128. [Google Scholar]
- D.A. Di Pietro and J. Droniou, An arbitrary-order discrete de Rham complex on polyhedral meshes: exactness, Poincaré inequalities, and consistency. Found. Comput. Math. 23 (2023) 85–164. [Google Scholar]
- J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. [CrossRef] [MathSciNet] [Google Scholar]
- D. Castanon Quiroz and D.A. Di Pietro, A pressure-robust HHO method for the solution of the incompressible Navier–Stokes equations on general meshes. IAM J. Sci. Comput. 44 (2024) 397–434. [Google Scholar]
- L. Mu, X. Ye and S. Zhang, A stabilizer-Free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. IAM J. Sci. Comput. 43 (2021) A2614–A2637. [Google Scholar]
- J. Zhao, B. Zhang, S. Mao and S. Chen, The divergence-free nonconforming virtual element for the Stokes problem. SIAM J. Numer. Anal. 57 (2019) 2730–2759. [CrossRef] [MathSciNet] [Google Scholar]
- J. Zhao, B. Zhang, S. Mao and S. Chen, The nonconforming virtual element method for the Darcy–Stokes problem. Comput. Methods Appl. Mech. Eng. 370 (2020) 113251. [CrossRef] [Google Scholar]
- G. Wang, L. Mu, Y. Wang and Y. He, A pressure-robust virtual element method for the Stokes problem. Comput. Methods Appl. Mech. Eng. 382 (2021) 113879. [Google Scholar]
- Y. Wang, G. Wang and Y. Shen, A pressure-robust virtual element method for the Navier–Stokes problem on polygonal mesh. Comput. Math. Appl. 131 (2023) 124–137. [Google Scholar]
- D. Frerichs and C. Merdon, Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem. IMA J. Numer. Anal. 42 (2021) 597–619. [Google Scholar]
- D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44. Springer (2013). [Google Scholar]
- B.A. De Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. [Google Scholar]
- F. Dassi and G. Vacca, Bricks for the mixed high-order virtual element method: projectors and differential operators. Appl. Numer. Math. 155 (2020) 140–159. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cangiani, V. Gyrya and G. Manzini, The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. [Google Scholar]
- F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: Math. Modell. Numer. Anal. 48 (2014) 1227–1240. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Zhao, S. Chen and B. Zhang, The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26 (2016) 1671–1687. [CrossRef] [MathSciNet] [Google Scholar]
- L.B. Da Veiga, F. Brezzi, L.D. Marini and A. Russo, Serendipity face and edge VEM spaces. Rendiconti Lincei 28 (2017) 143–180. [Google Scholar]
- X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part III. J. Comput. Appl. Math. 394 (2021) 113538. [Google Scholar]
- F. Brezzi, J. Douglas and L. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
- L.B. Da Veiga, F. Brezzi, L.D. Marini and A. Russo, The virtual element method. Acta Numer. 32 (2023) 123–202. [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer (2004). [Google Scholar]
- C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45 (2012) 309–328. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
