Open Access
| Issue |
ESAIM: M2AN
Volume 59, Number 5, September-October 2025
|
|
|---|---|---|
| Page(s) | 2789 - 2807 | |
| DOI | https://doi.org/10.1051/m2an/2025073 | |
| Published online | 15 October 2025 | |
- M. ApS, Mosek optimization toolbox for MATLAB. User’s Guide Ref. Manual Vers. 4 (2019) 116. [Google Scholar]
- R. Bañuelos, P. Mariano and J. Wang, Bounds for exit times of Brownian motion and the first Dirichlet eigenvalue for the Laplacian. Trans. Am. Math. Soc. 376 (2023) 5409–5432. [Google Scholar]
- O. Bénichou and R. Voituriez, Narrow-escape time problem: time needed for a particle to exit a confining domain through a small window. Phys. Rev. Lett. 100 (2008) 168105. [Google Scholar]
- A. Blessing, A. Blumenthal, M. Breden and M. Engel, Detecting random bifurcations via rigorous enclosures of large deviations rate functions. Phys. D: Nonlinear Phenomena 476 (2025) 134617. [Google Scholar]
- J.J. Bramburger, Matlab code for “bounding escape rates and approximating quasi-stationary distributions of brownian dynamics” (2025). https://github.com/jbramburger/SDE-Escape-Rates [Google Scholar]
- J.J. Bramburger, S. Dahdah and J.R. Forbes, Synthesizing control laws from data using sum-of-squares optimization, in 2024 IEEE Conference on Control Technology and Applications (CCTA). IEEE (2024) 505–510. [Google Scholar]
- E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters. Math. Comput. 89 (2020) 2563–2611. [Google Scholar]
- A. Chernyavsky, J.J. Bramburger, G. Fantuzzi and D. Goluskin, Convex relaxations of integral variational problems: pointwise dual relaxation and sum-of-squares optimization. SIAM J. Optim. 33 (2023) 481–512. [Google Scholar]
- A.F. Cheviakov, M.J. Ward and R. Straube, An asymptotic analysis of the mean first passage time for narrow escape problems: part II: the sphere. Multiscale Model. Simul. 8 (2010) 836–870. [Google Scholar]
- T. Chou and M.R. D’Orsogna, First passage problems in biology, in First-passage Phenomena and their Applications. World Scientific (2014) 306–345. [Google Scholar]
- M.I. Delgado, M.J. Ward and D. Coombs, Conditional mean first passage times to small traps in a 3-D domain with a sticky boundary: applications to T cell searching behavior in lymph nodes. Multiscale Model. Simul. 13 (2015) 1224–1258. [Google Scholar]
- G. Di Gesù, T. Lelièvre, D. Le Peutrec and B. Nectoux, Jump Markov models and transition state theory: the quasi-stationary distribution approach. Faraday Discuss. 195 (2016) 469–495. [Google Scholar]
- D.L. Ermak and J.A. McCammon, Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69 (1978) 1352–1360. [Google Scholar]
- G. Fantuzzi and D. Goluskin, Bounding extreme events in nonlinear dynamics using convex optimization. SIAM J. Appl. Dyn. Syst. 19 (2020) 1823–1864. [Google Scholar]
- D. Gilbarg, N.S. Trudinger, D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Vol. 224. Springer (1977). [Google Scholar]
- D.S. Grebenkov, R. Metzler and G. Oshanin, Full distribution of first exit times in the narrow escape problem. New J. Phys. 21 (2019) 122001. [Google Scholar]
- I.V. Grigoriev, Y.A. Makhnovskii, A.M. Berezhkovskii and V.Y. Zitserman, Kinetics of escape through a small hole. J. Chem. Phys. 116 (2002) 9574–9577. [Google Scholar]
- S. Habibi, M. Kočvara and M. Stingl, Loraine – an interior-point solver for low-rank semidefinite programming. Optim. Methods Softw. 39 (2024) 1185–1215. [Google Scholar]
- D. Henrion, S. Naldi and M.S. El Din, Exact algorithms for linear matrix inequalities. SIAM J. Optim. 26 (2016) 2512–2539. [Google Scholar]
- D. Henrion, M. Korda and J.B. Lasserre, The Moment-SOS Hierarchy: Lectures in Probability, Statistics, Computational Geometry, Control And Nonlinear PDEs. Vol. 4. World Scientific (2020). [Google Scholar]
- D. Holcman and Z. Schuss, Escape through a small opening: receptor trafficking in a synaptic membrane. J. Stat. Phys. 117 (2004) 975–1014. [Google Scholar]
- D. Holcman and Z. Schuss, Time scale of diffusion in molecular and cellular biology. J. Phys. A: Math. Theor. 47 (2014) 173001. [Google Scholar]
- S. Iyaniwura, T. Wong, M.J. Ward and C.B. Macdonald, Simulation and optimization of mean first passage time problems in 2-D using numerical embedded methods and perturbation theory. Multiscale Model. Simul. 19 (2021) 1367–1393. [Google Scholar]
- C. Jansson, D. Chaykin and C. Keil, Rigorous error bounds for the optimal value in semidefinite programming. SIAM J. Numer. Anal. 46 (2008) 180–200. [Google Scholar]
- M. Korda, D. Henrion and J.B. Lasserre, Moments and convex optimization for analysis and control of nonlinear PDEs, in Handbook of Numerical Analysis. Vol. 23. Elsevier (2022) 339–366. [Google Scholar]
- J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 (2001) 796–817. [Google Scholar]
- J.B. Lasserre, A sum of squares approximation of nonnegative polynomials. SIAM Rev. 49 (2007) 651–669. [Google Scholar]
- J.B. Lasserre, An Introduction To Polynomial And Semi-Algebraic Optimization. Vol. 52. Cambridge University Press (2015). [Google Scholar]
- J.B. Lasserre, D. Henrion, C. Prieur and E. Trélat, Nonlinear optimal control via occupation measures and LMI-relaxations. SIAM J. Control Optim. 47 (2008) 1643–1666. [CrossRef] [MathSciNet] [Google Scholar]
- C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods App. 18 (2012) 119–146. [Google Scholar]
- N. Leijenhorst and D. de Laat, Solving clustered low-rank semidefinite programs arising from polynomial optimization. Math. Program. Comput. 16 (2024) 503–534. [Google Scholar]
- T. Lelièvre, D.L. Peutrec and B. Nectoux, Eyring-Kramers exit rates for the overdamped Langevin dynamics: the case with saddle points on the boundary. Preprint arXiv:2207.09284 (2022). [Google Scholar]
- T. Lelièvre, M. Rachid and G. Stoltz, A spectral approach to the narrow escape problem in the disk. Preprint arXiv:2401.06903 (2024). [Google Scholar]
- X. Liu, Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems. Springer Nature (2024). [Google Scholar]
- J. Lofberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508). IEEE (2004) 284–289. [Google Scholar]
- J.B. Madrid and S.D. Lawley, Competition between slow and fast regimes for extreme first passage times of diffusion. J. Phys. A: Math. Theor. 53 (2020) 335002. [Google Scholar]
- V. Magron and M.S. El Din, On exact Reznick, Hilbert–Artin and Putinar’s representations. J. Symbol. Comput. 107 (2021) 221–250. [Google Scholar]
- W.C.H. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
- L. Michel, About small eigenvalues of the Witten Laplacian. Pure Appl. Anal. 1 (2019) 149–206. [Google Scholar]
- K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39 (1987) 117–129. [Google Scholar]
- M.T. Nakao, M. Plum and Y. Watanabe, Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations. Springer (2019). [Google Scholar]
- Y. Nesterov, Squared functional systems and optimization problems, in High Performance Optimization. Springer (2000) 405–440. [Google Scholar]
- H. Oeri and D. Goluskin, Convex computation of maximal Lyapunov exponents. Nonlinearity 36 (2023) 5378. [Google Scholar]
- P.A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. California Institute of Technology (2000). [Google Scholar]
- P.A. Parrilo and R.R. Thomas, Sum of Squares: Theory and Applications. Vol. 77. American Mathematical Society (2020). [Google Scholar]
- G.A. Pavliotis, Stochastic processes and applications. Texts Appl. Math. 60 2014. [Google Scholar]
- S. Pillay, M.J. Ward, A. Peirce and T. Kolokolnikov, An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: two-dimensional domains. Multiscale Model. Simul. 8 (2010) 803–835. [Google Scholar]
- S. Redner, A Guide to First-Passage Processes. Cambridge University Press (2001). [Google Scholar]
- T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide. Vol. 2. Springer (2010). [Google Scholar]
- Z. Schuss, A. Singer and D. Holcman, The narrow escape problem for diffusion in cellular microdomains. Proc. Nat. Acad. Sci. 104 (2007) 16098–16103. [Google Scholar]
- H. Touchette, Introduction to dynamical large deviations of Markov processes. Phys. A: Stat. Mech. App. 504 (2018) 5–19. [Google Scholar]
- G. Valmorbida, M. Ahmadi and A. Papachristodoulou, Stability analysis for a class of partial differential equations via semidefinite programming. IEEE Trans. Autom. Control 61 (2015) 1649–1654. [Google Scholar]
- E. Witten, Supersymmetry and morse theory. J. Differ. Geom. 17 (1982) 661–692. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
