Free Access
Volume 45, Number 2, March-April 2011
Page(s) 335 - 360
Published online 24 August 2010
  1. V. Bally, An approximation scheme for BSDEs and applications to control and nonlinear PDE's, in Pitman Research Notes in Mathematics Series 364, Longman, New York (1997).
  2. V. Bally and G. Pages, A quantization algorithm for solving discrete time multi-dimensional optimal stopping problems. Bernoulli 9 (2003) 1003–1049. [CrossRef] [MathSciNet]
  3. V. Bally and G. Pages, Error analysis of the quantization algorithm for obstacle problems. Stoch. Proc. Appl. 106 (2003) 1–40.
  4. B. Bouchard and N. Touzi, Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equation. Stoch. Proc. Appl. 111 (2004) 175–206. [CrossRef]
  5. P. Briand, B. Delyon and J. Mémin, Donsker-type theorem for BSDEs. Elect. Comm. Probab. 6 (2001) 1–14.
  6. P. Briand, B. Delyon and J. Mémin, On the robustness of backward stochastic differential equations. Stoch. Process. Appl. 97 (2002) 229–253. [CrossRef] [MathSciNet]
  7. D. Chevance, Résolution numérique des équations différentielles stochastiques rétrogrades, in Numerical Methods in Finance, Cambridge University Press, Cambridge (1997).
  8. F. Coquet, V. Mackevicius and J. Mémin, Stability in D of martingales and backward equations under discretization of filtration. Stoch. Process. Appl. 75 (1998) 235–248. [CrossRef] [MathSciNet]
  9. J. Cvitanic, I. Karatzas and M. Soner, Backward stochastic differential equations with constraints on the gain-process. Ann. Probab. 26 (1998) 1522–1551. [CrossRef] [MathSciNet]
  10. F. Delarue and S. Menozzi, An interpolated Stochastic Algorithm for Quasi-Linear PDEs. Math. Comput. 261 (2008) 125–158.
  11. J. Douglas, J. Ma and P. Protter, Numerical methods for forward-backward stochastic differential equations. Ann. Appl. Probab. 6 (1996) 940–968. [CrossRef] [MathSciNet]
  12. N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.-C. Quenez, Reflected solutions of backward SDE and related obstacle problems for PDEs. Ann. Probab. 25 (1997) 702–737. [CrossRef] [MathSciNet]
  13. N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet]
  14. E. Gobet, J.P. Lemor and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12 (2006) 889–916. [CrossRef] [MathSciNet]
  15. P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992).
  16. J. Ma, P. Protter, J. San Martín and S. Torres, Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 302–316. [CrossRef] [MathSciNet]
  17. J. Mémin, S. Peng and M. Xu, Convergence of solutions of discrete reflected backward SDE's and simulations. Acta Math. Appl. Sin. (English Series) 24 (2008) 1–18. [CrossRef]
  18. E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  19. S. Peng, Monotonic limit theory of BSDE and nonlinear decomposition theorem of Doob-Meyer's type. Probab. Theory Relat. Fields 113 (1999) 473–499. [CrossRef]
  20. S. Peng and M. Xu, Reflected BSDE with Constraints and the Related Nonlinear Doob-Meyer Decomposition. Preprint, available at e-print:arXiv:math/0611869v4 (2006).
  21. E.G. Rosazza, Risk measures via Formula -expectations. Insur. Math. Econ. 39 (2006) 19–34. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  22. M. Xu, Numerical algorithms and simulations for reflected BSDE with two barriers. Preprint, available at arXiv:0803.3712v2 [math.PR] (2007).
  23. J. Zhang, Some fine properties of backward stochastic differential equations. Ph.D. Thesis, Purdue University (2001).
  24. J. Zhang, A numerical scheme for BSDEs. Ann. Appl. Probab. 14 (2004) 459–488. [CrossRef] [MathSciNet]
  25. Y. Zhang and W. Zheng, Discretizing a backward stochastic differential equation. Int. J. Math. Math. Sci. 32 (2002) 103–116. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you