Free Access
Issue
ESAIM: M2AN
Volume 45, Number 2, March-April 2011
Page(s) 309 - 334
DOI https://doi.org/10.1051/m2an/2010057
Published online 20 August 2010
  1. A. Alonso-Rodriguez and L. Gerardo-Giorda, New non-overlapping domain decomposition methods for the time-harmonic Maxwell system. SIAM J. Sci. Comp. 28 (2006) 102–122. [Google Scholar]
  2. M. Bendahmane and K.H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1 (2006) 185–218. [MathSciNet] [Google Scholar]
  3. Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal.: Real World Appl. 10 (2009) 458–482. [CrossRef] [MathSciNet] [Google Scholar]
  4. R.H. Clayton and A.V. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96 (2008) 19–43. [Google Scholar]
  5. R.H. Clayton, O.M. Bernus, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, A.V. Panfilov, F.B. Sachse, G. Seemann and H. Zhang, Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. (2010) DOI: 10.1016/j.pbiomolbio.2010.05.008. [Google Scholar]
  6. J.C. Clements, J. Nenonen, P.K.J. Li and M. Horacek, Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 32 (2004) 984–990. [CrossRef] [PubMed] [Google Scholar]
  7. P. Colli Franzone and L.F. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci. 14 (2004) 883–911. [CrossRef] [Google Scholar]
  8. P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf Eds., Birkhauser (2002) 49–78. [Google Scholar]
  9. P. Colli Franzone, L.F. Pavarino and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Math. Biosc. 197 (2005) 35–66. [Google Scholar]
  10. P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang and L.F. Pavarino, Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942–962. [CrossRef] [MathSciNet] [Google Scholar]
  11. V. Dolean and F. Nataf, An Optimized Schwarz Algorithm for the compressible Euler equations, in Domain Decomposition Methods in Science and Engineering, Proceedings of the DD16 Conference, Springer-Verlag (2007) 173–180. [Google Scholar]
  12. V. Dolean, M.J. Gander and L. Gerardo-Giorda, Optimized Schwarz Methods for Maxwell's equations. SIAM J. Sci. Comput. 31 (2009) 2193–2213. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.J. Fox, J.L. McHarg and R.F. Gilmour, Ionic mechanism of electrical alternans. Am. J. Physiol. (Heart Circ. Physiol.) 282 (2002) H516–H530. [Google Scholar]
  14. M.J. Gander, Optimized Schwarz methods. SIAM J. Num. Anal. 44 (2006) 699–731. [Google Scholar]
  15. M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38–60. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Gerardo-Giorda, L. Mirabella, F. Nobile, M. Perego and A. Veneziani, A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys. 228 (2009) 3625–3639. [Google Scholar]
  17. J.P. Keener, Direct activation and defibrillation of cardiac tissue. J. Theor. Biol. 178 (1996) 313–324. [CrossRef] [PubMed] [Google Scholar]
  18. J.P. Keener and J. Sneyd, Mathematical Physiology. Springer-Verlag, New York (1998). [Google Scholar]
  19. D.C. Latimer and B.J. Roth, Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans. Biomed. Eng. 45 (1998) 1449–1458. [CrossRef] [PubMed] [Google Scholar]
  20. J. Le Grice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin and P.J. Hunter, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. (Heart Circ. Physiol.) 269 (1995) H571–H582. [Google Scholar]
  21. P.-L. Lions, On the Schwarz alternating method. III: A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, Philadelphia, R. Glowinski, J. Périaux, T.F. Chan and O. Widlund Eds., SIAM (1990). [Google Scholar]
  22. L. Luo and Y. Rudy, A model of the ventricular cardiac action potential: depolarization, repolarization and their interaction. Circ. Res. 68 (1991) 1501–1526. [Google Scholar]
  23. L. Mirabella, F. Nobile and A. Veneziani, An a posteriori error estimator for model adaptivity in electrocardiology. Technical Report TR-2009-025, Dept. MathCS, Emory University (2009). [Google Scholar]
  24. B.F. Nielsen, T.S. Ruud, G.T. Lines and A. Tveito, Optimal monodomain approximation of the bidomain equations. Appl. Math. Comp. 184 (2007) 276–290. [CrossRef] [Google Scholar]
  25. A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark and W.R. Giles, Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 82 (1998) 63–81. [PubMed] [Google Scholar]
  26. L.F. Pavarino and S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comp. 31 (2008) 420–443. [Google Scholar]
  27. M. Pennacchio and V. Simoncini, Efficient algebraic solution of rection-diffusion systems for the cardiac excitation process. J. Comput. Appl. Math. 145 (2002) 49–70. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Perego and A. Veneziani, An efficient generalization of the Rush-Larsen method for solving electro-physiology membrane equations. Electronic Transaction on Numerical Analysis 35 (2009) 234–256. [Google Scholar]
  29. M. Potse, B. Dubé, J. Richer and A. Vinet, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53 (2006) 2425–2435. [CrossRef] [PubMed] [Google Scholar]
  30. A. Quarteroni and A. Valli, Domain Decompostion Methods for Partial Differential Equations. Oxford University Press, Oxford (1999). [Google Scholar]
  31. A. Quarteroni, L. Formaggia and A. Veneziani, Complex Systems in Biomedicine, in Computational electrocardiology: mathematical and numerical modeling, P. Colli Franzone, L. Pavarino and G. Savaré Eds., Springer, Milan (2006). [Google Scholar]
  32. B. Roth, A comparison of two boundary conditions used with the bidomain model of cardiac tissue. Ann. Biomed. Eng. 19 (1991) 669–678. [CrossRef] [PubMed] [Google Scholar]
  33. S. Scacchi, A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Eng. 197 (2008) 4051–4061. [Google Scholar]
  34. B.F. Smith, P.E. Bjørstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996). [Google Scholar]
  35. D. Streeter, Gross morphology and fiber geometry in the heart, in Handbook of Physiology 1 (Sect. 2), R.M. Berne Ed., Williams and Wilnkins (1979) 61–112. [Google Scholar]
  36. A. Toselli and O. Widlund, Domain Decomposition Methods. 1st edition, Springer (2004). [Google Scholar]
  37. N. Trayanova, Defibrillation of the heart: insights into mechanisms from modelling studies. Exp. Physiol. 91 (2006) 323–337. [CrossRef] [PubMed] [Google Scholar]
  38. M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal.: Real World Appl. 10 (2009) 849–868. [CrossRef] [MathSciNet] [Google Scholar]
  39. E.J. Vigmond, F. Aguel and N.A. Trayanova, Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49 (2002) 1260–1269. [CrossRef] [PubMed] [Google Scholar]
  40. E.J. Vigmond, R. Weber dos Santos, A.J. Prassl, M. Deo and G. Plank, Solvers for the caridac bidomain equations. Prog. Biophys. Mol. Biol. 96 (2008) 3–18. [Google Scholar]
  41. R. Weber dos Santos, G. Planck, S. Bauer and E.J. Vigmond, Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51 (2004) 1960–1968. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you