Free Access
Issue
ESAIM: M2AN
Volume 45, Number 2, March-April 2011
Page(s) 201 - 216
DOI https://doi.org/10.1051/m2an/2010038
Published online 02 August 2010
  1. F. Ben Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257–281. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Bercovier, Régularisation duale des problèmes variationnels mixtes : application aux éléments finis mixtes et extension à quelques problèmes non linéaires. Thèse de Doctorat d'État, Université de Rouen, France (1976). [Google Scholar]
  3. M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211–236. [MathSciNet] [Google Scholar]
  4. C. Bernardi, Indicateurs d'erreur en hN version des éléments spectraux. RAIRO Modél. Math. Anal. Numér. 30 (1996) 1–38. [MathSciNet] [Google Scholar]
  5. C. Bernardi and Y. Maday, Polynomial approximation of some singular functions. Appl. Anal. 42 (1991) 1–32. [Google Scholar]
  6. C. Bernardi and Y. Maday, Spectral Methods, in Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485. [Google Scholar]
  7. C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci. 9 (1999) 395–414. [Google Scholar]
  8. C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, P.-L. George Ed., Hermès (2001) 251–278. [Google Scholar]
  9. C. Bernardi, V. Girault and F. Hecht, A posteriori analysis of a penalty method and application to the Stokes problem. Math. Mod. Meth. Appl. Sci. 13 (2003) 1599–1628. [Google Scholar]
  10. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer-Verlag (2004). [Google Scholar]
  11. G.F. Carey and R. Krishnan, Penalty approximation of Stokes flow. Comput. Meth. Appl. Mech. Eng. 35 (1982) 169–206. [CrossRef] [Google Scholar]
  12. G.F. Carey and R. Krishnan, Penalty finite element method for the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng. 42 (1984) 183–224. [CrossRef] [Google Scholar]
  13. G.F. Carey and R. Krishnan, Convergence of iterative methods in penalty finite element approximation of the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng. 60 (1987) 1–29. [CrossRef] [Google Scholar]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer-Verlag (1986). [Google Scholar]
  15. Y. Maday, D. Meiron, A.T. Patera and E.M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput. 14 (1993) 310–337. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.S. Malkus and E.T. Olsen, Incompressible finite elements which fail the discrete LBB condition, in Penalty-Finite Element Methods in Mechanics, Phoenix, Am. Soc. Mech. Eng., New York (1982) 33–50. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you