Free Access
Issue
ESAIM: M2AN
Volume 45, Number 2, March-April 2011
Page(s) 217 - 234
DOI https://doi.org/10.1051/m2an/2010040
Published online 02 August 2010
  1. B. Alali and R. Lipton, Multiscale Analysis of Heterogeneous Media in the Peridynamic Formulation. IMA preprint, 2241 (2009). [Google Scholar]
  2. E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling and O. Weckner, Peridynamics for multiscale materials modeling. J. Phys. Conf. Ser. 125 (2008) 012078. [Google Scholar]
  3. G. Aubert and P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47 (2009) 844–860. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Belytschko and S.P. Xiao, A bridging domain method for coupling continua with molecular dynamics. Int. J. Mult. Comp. Eng. 1 (2003) 115–126. [Google Scholar]
  5. W. Curtin and R. Miller, Atomistic/continuum coupling methods in multi-scale materials modeling. Mod. Simul. Mater. Sci. Engineering 11 (2003) R33–R68. [Google Scholar]
  6. K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54 (2006) 1811–1842. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory. Interscience, New York (1958). [Google Scholar]
  8. E. Emmrich and O. Weckner, Analysis and numerical approximation of an integrodifferential equation modelling non-local effects in linear elasticity. Math. Mech. Solids 12 (2005) 363–384. [Google Scholar]
  9. E. Emmrich and O. Weckner, The peridynamic equation of motion in nonlocal elasticity theory, in III European Conference on Computational Mechanics – Solids, Structures and Coupled Problems in Engineering, C.A. Mota Soares, J.A.C. Martins, H.C. Rodrigues, J.A.C. Ambrosio, C.A.B. Pina, C.M. Mota Soares, E.B.R. Pereira and J. Folgado Eds., Lisbon, Springer (2006). [Google Scholar]
  10. E. Emmrich and O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5 (2007) 851–864. [MathSciNet] [Google Scholar]
  11. J. Fish, M.A. Nuggehally, M.S. Shephard, C.R. Picu, S. Badia, M.L. Parks and M. Gunzburger, Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comp. Meth. Appl. Mech. Eng. 196 (2007) 4548–4560. [Google Scholar]
  12. M. Gunzburger and R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems. Preprint (2009). [Google Scholar]
  13. L. Hörmander, Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, Berlin (1985). [Google Scholar]
  14. O.A. Ladyzhenskaya, The boundary value problems of mathematical physics. Springer-Verlag, New York (1985). [Google Scholar]
  15. R.B. Lehoucq and S.A. Silling, Statistical coarse-graining of molecular dynamics into peridynamics. Technical Report, SAND2007-6410, Sandia National Laboratories, Albuquerque and Livermore (2007). [Google Scholar]
  16. R.B. Lehoucq and S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56 (2008) 1566–1577. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
  18. R.E. Miller and E.B. Tadmor, The quasicontinuum method: Overview, applications, and current directions. J. Comp.-Aided Mater. Des. 9 (2002) 203–239. [Google Scholar]
  19. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175–209. [Google Scholar]
  20. S.A. Silling, Linearized theory of peridynamic states. Sandia National Laboratories, SAND (2009) 2009–2458. [Google Scholar]
  21. S.A. Silling and R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elasticity 93 (2008) 13–37. [CrossRef] [MathSciNet] [Google Scholar]
  22. S.A. Silling, O. Weckner, E. Askari and F. Bobaru, Crack nucleation in a peridynamic solid. Preprint (2009). [Google Scholar]
  23. O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53 (2005) 705–728. [CrossRef] [MathSciNet] [Google Scholar]
  24. K. Zhou and Q. Du, Mathematical and Numerical Analysis of Peridynamic Models with Nonlocal Boundary Conditions. SIAM J. Numer. Anal. (submitted). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you