Free Access
Issue
ESAIM: M2AN
Volume 45, Number 3, May-June 2011
Page(s) 387 - 422
DOI https://doi.org/10.1051/m2an/2010061
Published online 11 October 2010
  1. L. Boutet de Monvel and P. Krée, Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier (Grenoble) 17 (1967) 295–323. [MathSciNet] [Google Scholar]
  2. H. Chen and L. Rodino, General Theory of PDE and Gevrey Classes, in General Theory of Partial Differential Equations and Microlocal Analysis, Trieste 1995, Notes Math. Ser. 349, Pitman Res., Longman, Harlow (1996) 6–81. [Google Scholar]
  3. G.M. Constantine and T.H. Savits, A multivariate Faà di Bruno Formula with applications. Trans. AMS 348 (1996) 503–520. [CrossRef] [Google Scholar]
  4. M. Costabel, M. Dauge and S. Nicaise, Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains. HAL Archives (2010), http://hal.archives-ouvertes.fr/docs/00/45/41/17/PDF/CoDaNi_Analytic_Part_I.pdf [Google Scholar]
  5. R.A. DeVore and L.R. Scott, Error bounds for Gaussian quadrature and weighted polynomial approximation. SIAM J. Numer. Anal. 21 (1984) 400–412. [CrossRef] [MathSciNet] [Google Scholar]
  6. M.G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19 (1982) 6. [Google Scholar]
  7. H. Han, The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity. Numer. Math. 68 (1994) 269–281. [CrossRef] [MathSciNet] [Google Scholar]
  8. G.C. Hsiao and W.L. Wendland, Boundary Integral Equations, Springer Appl. Math. Sci. 164. Springer Verlag (2008). [Google Scholar]
  9. G.C. Hsiao, P. Kopp and W.L. Wendland, A Galerkin collocation method for some integral equations of the first kind. Computing 25 (1980) 89–130. [CrossRef] [MathSciNet] [Google Scholar]
  10. N. Jacob, Pseudodifferential Operators and Markov Processes I: Fourier Analysis and Semigroups. Imperial College Press, London (2001). [Google Scholar]
  11. R. Kieser, Über einseitige Sprungrelationen und hypersinguläre Operatoren in der Methode der Randelemente. Ph.D. Dissertation, Department of Mathematics, Univ. Stuttgart, Germany (1990). [Google Scholar]
  12. A.W. Maue, Über die Formulierung eines allgemeinen Diffraktionsproblems mit Hilfe einer Integralgleichung. Zeitschr. f. Physik 126 (1949) 601–618. [Google Scholar]
  13. V.G. Maz'ya, Boundary Integral Equations, in Encyclopedia of Mathematical Sciences 27, Analysis IV, V.G. Maz'ya and S.M. Nikolskii Eds., Springer-Verlag, Berlin (1991) 127–228. [Google Scholar]
  14. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univ. Press, Cambridge (2000). [Google Scholar]
  15. J.C. Nedelec, Integral Equations with Non-integrable kernels. Integr. Equ. Oper. Theory 5 (1982) 562–572. [Google Scholar]
  16. J.C. Nedelec, Acoustic and Electromagnetic Equations. Springer-Verlag, New York (2001). [Google Scholar]
  17. N. Reich, Ch. Schwab and Ch. Winter, On Kolmogorov Equations for Anisotropic Multivariate Lévy Processes. Finance Stoch. (2010) DOI: 10.1007/s00780-009-0108-x. [Google Scholar]
  18. S. Sauter, Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen. Ph.D. Thesis, Universität Kiel, Germany (1992). [Google Scholar]
  19. S. Sauter and C. Schwab, Randelementmethoden. Teubner Publ., Wiesbaden (2004) [English Edition: Boundary Element Methods. Springer Verlag, Berlin-Heidelberg-New York (to appear)]. [Google Scholar]
  20. C. Schwab, Variable order composite quadrature of singular and nearly singular integrals. Computing 53 (1994) 173–194. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Schwab and W.L. Wendland, On numerical cubatures of singular surface integrals in boundary element methods. Numer. Math. 62 (1992) 343–369. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Springer-Verlag (1993). [Google Scholar]
  23. E.P. Stephan, The hp-version of the boundary element method for solving 2- and 3-dimensional boundary value problems. Comput. Meth. Appl. Mech. Engrg. 133 (1996) 183–208. [Google Scholar]
  24. L.N. Trefethen, Is Gauss Quadrature Better than Clenshaw-Curtis? SIAM Rev. 50 (2008) 67–87. [Google Scholar]
  25. Ch. Winter, Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. Ph.D. Thesis No. 18221, ETH Zürich, Switzerland (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you