Free Access
Issue
ESAIM: M2AN
Volume 45, Number 3, May-June 2011
Page(s) 447 - 476
DOI https://doi.org/10.1051/m2an/2010062
Published online 11 October 2010
  1. S. Badia and R. Codina, Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47 (2009) 1971–2000. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Balakrishnan, A.R. Tzafriri, P. Seifert, A. Groothuis, C. Rogers and E.R. Edelman, Strut position, blood flow, and drug deposition. Implications for single and overlapping drug-eluting stents. Circulation 111 (2005) 2958–2965. [CrossRef] [PubMed] [Google Scholar]
  3. R. Balossino, F. Gervaso, F. Migliavacca and G. Dubini, Effects of different stent designs on local hemodynamics in stented arteries. J. Biom. 41 (2008) 1053–1061. [CrossRef] [Google Scholar]
  4. J.M. Boland and R.A. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722–731. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comp. 71 (2002) 147–156. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Burman, Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem. Numer. Meth. Partial Diff. Equ. 24 (2008) 127–143. [CrossRef] [Google Scholar]
  7. E. Burman and P. Hansbo, A unified stabilized method for Stokes' and Darcy's equations. J. Comput. Appl. Math. 198 (2007) 35–51. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Burman and P. Zunino, A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44 (2006) 1612–1638. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Burman, M.A. Fernández and P. Hansbo, Continuous interior penalty finite element method for Oseen's equations. SIAM J. Numer. Anal. 44 (2006) 1248–1274. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Cahouet and J.-P. Chabard, Some fast 3D finite element solvers for the generalized Stokes problem. Int. J. Numer. Methods Fluids 8 (1988) 869–895. [CrossRef] [Google Scholar]
  11. C. Calgaro, P. Deuring and D. Jennequin, A preconditioner for generalized saddle point problems: application to 3D stationary Navier-Stokes equations. Numer. Methods Partial Diff. Equ. 22 (2006) 1289–1313. [CrossRef] [Google Scholar]
  12. C. D'Angelo and A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations. Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18 (2008) 1481–1504. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. D'Angelo and P. Zunino, A numerical study of the interaction of blood flow and drug release from cardiovascular stents, in Numerical Mathematics and Advanced Applications – Proceedings of ENUMATH 2007, Springer, Berlin (2008) 75–82. [Google Scholar]
  14. C. D'Angelo and P. Zunino, A finite element method based on weighted interior penalties for heterogeneous incompressible flows. SIAM J. Numer. Anal. 47 (2009) 3990–4020. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. D'Angelo and P. Zunino, Multiscale models of drug delivery by thin implantable devices, in Applied and industrial mathematics in Italy III, Ser. Adv. Math. Appl. Sci. 82, World Sci. Publ. (2009). [Google Scholar]
  16. C. D'Angelo and P. Zunino, Numerical approximation with Nitsche's coupling of transient Stokes'/Darcy's flow problems applied to hemodynamics. Technical report, MOX, Department of Mathematics, Politecnico di Milano (submitted). [Google Scholar]
  17. M.C. Delfour, A. Garon and V. Longo, Modeling and design of coated stents to optimize the effect of the dose. SIAM J. Appl. Math. 65 (2005) 858–881. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes Darcy coupling. SIAM J. Numer. Anal. 45 (2007) 1246–1268. [CrossRef] [MathSciNet] [Google Scholar]
  19. H.C. Elman, D.J. Silvester and A.J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and Scientific Computation, Oxford University Press, New York (2005). [Google Scholar]
  20. L. Formaggia, A. Quarteroni and A. Veneziani Eds., Cardiovascular mathematics – Modeling and simulation of the circulatory system, MS&A Modeling, Simulation and Applications 1. Springer-Verlag Italia, Milan (2009). [Google Scholar]
  21. L. Formaggia, S. Minisini and P. Zunino, Modeling erosion controlled drug release and transport phenomena in the arterial tissue. Math. Models Methods Appl. Sci. (to appear). [Google Scholar]
  22. R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press, Cambridge (1990), Corrected reprint of the 1985 original. [Google Scholar]
  23. A. Klawonn, Block-triangular preconditioners for saddle point problems with a penalty term. SIAM J. Sci. Comput. 19 (1998) 172–184. Special issue on iterative methods (Copper Mountain, CO, 1996). [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Klawonn and G. Starke, Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis. Numer. Math. 81 (1999) 577–594. [CrossRef] [MathSciNet] [Google Scholar]
  25. V.B. Kolachalama, A.R. Tzafriri, D.Y. Arifin and E.R. Edelman, Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J. Control Release 133 (2009) 24–30. [CrossRef] [PubMed] [Google Scholar]
  26. W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2003) 2195–2218. [CrossRef] [MathSciNet] [Google Scholar]
  27. S.L. Lee and C.W. Gear, Second-order accurate projective integrators for multiscale problems. J. Comput. Appl. Math. 201 (2007) 258–274. [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Loghin and A.J. Wathen, Analysis of preconditioners for saddle-point problems. SIAM J. Sci. Comput. 25 (2004) 2029–2049. [CrossRef] [MathSciNet] [Google Scholar]
  29. M.A. Lovich and E.R. Edelman, Mechanisms of transmural heparin transport in the rat abdominal aorta after local vascular delivery. Circ. Res. 77 (1995) 1143–1150. [PubMed] [Google Scholar]
  30. F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio and R. Pietrabissa, Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35 (2002) 803–811. [CrossRef] [PubMed] [Google Scholar]
  31. L. Petrini, F. Migliavacca, F. Auricchio and G. Dubini, Numerical investigation of the intravascular coronary stent flexibility. J. Biomech. 37 (2004) 495–501. [CrossRef] [PubMed] [Google Scholar]
  32. G. Pontrelli and F. de Monte, Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int. J. Heat Mass Transfer 50 (2007) 3658–3669. [CrossRef] [Google Scholar]
  33. K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17 (2007) 215–252. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 292–315. [Google Scholar]
  35. D.V. Sakharov, L.V. Kalachev and D.C. Rijken, Numerical simulation of local pharmacokinetics of a drug after intravascular delivery with an eluting stent. J. Drug Targ. 10 (2002) 507–513. [CrossRef] [Google Scholar]
  36. Ch. Schwab, p- and hp-Finite Element Methods – Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation, Oxford University Press, New York (1998). [Google Scholar]
  37. D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31 (1994) 1352–1367. [CrossRef] [MathSciNet] [Google Scholar]
  38. J.S. Soares and P. Zunino, A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks. Biomaterials 31 (2010) 3032–3042. [CrossRef] [PubMed] [Google Scholar]
  39. G. Starke, Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems. Numer. Math. 78 (1997) 103–117. [CrossRef] [MathSciNet] [Google Scholar]
  40. S. Tada and J.M. Tarbell, Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study. Am. J. Physiol. Heart Circ. Physiol. 287 (2004) H905–H913. [CrossRef] [PubMed] [Google Scholar]
  41. A.R. Tzafriri and E.R. Edelman, On the validity of the quasi-steady state approximation of bimolecular reactions in solution. J. Theor. Biol. 233 (2005) 343–350. [CrossRef] [PubMed] [Google Scholar]
  42. C. Vergara and P. Zunino, Multiscale boundary conditions for drug release from cardiovascular stents. Multiscale Model. Simul. 7 (2008) 565–588. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  43. A. Wathen and D. Silvester, Fast iterative solution of stabilised Stokes systems. I. Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30 (1993) 630–649. [CrossRef] [MathSciNet] [Google Scholar]
  44. P. Zunino, C. D'Angelo, L. Petrini, C. Vergara, C. Capelli and F. Migliavacca, Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release. Comput. Methods Appl. Mech. Eng. 198 (2009) 3633–3644. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you