Free Access
Volume 45, Number 3, May-June 2011
Page(s) 477 - 504
Published online 11 October 2010
  1. C. Agelet de Saracibar, M. Cervera and M. Chiumenti, On the formulation of coupled thermoplastic problems with phase-change. Int. J. Plasticity 15 (1999) 1–34. [CrossRef]
  2. J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20 (1999) 117–137. [NASA ADS] [CrossRef] [MathSciNet]
  3. S. Bartels and T. Roubíček, Thermoviscoplasticity at small strains. ZAMM 88 (2008) 735–754. [CrossRef] [MathSciNet]
  4. L. Boccardo, A. Dall'aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data. J. Funct. Anal. 147 (1997) 237–258. [CrossRef] [MathSciNet]
  5. L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149–169. [CrossRef] [MathSciNet]
  6. L. Boccardo and T. Gallouët, Summability of the solutions of nonlinear elliptic equations with right hand side measures. J. Convex Anal. 3 (1996) 361–365. [MathSciNet]
  7. B.A. Boley and J.H. Weiner, Theory of thermal stresses. J. Wiley (1960), Dover edition (1997).
  8. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer, second edition, New York (2002).
  9. O. Bruhns and J. Mielniczuk, Zur Theorie der Verzweigungen nicht-isothermer elastoplastischer Deformationen. Ing.-Arch. 46 (1977) 65–74. [CrossRef]
  10. M. Canadija and J. Brnic, Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int. J. Plasticity 20 (2004) 1851–1874. [CrossRef]
  11. C. Carstensen and R. Klose, Elastoviscoplastic finite element analysis in 100 lines of Matlab. J. Numer. Math. 10 (2002) 157–192. [CrossRef] [MathSciNet]
  12. G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165–225. [CrossRef] [MathSciNet]
  13. G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237–291. [CrossRef] [MathSciNet]
  14. C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems. Chapman & Hall/CRC, Boca Raton (2005).
  15. G. Francfort and A. Mielke, An existence result for a rate-independent material model in the case of nonconvex energies. J. reine angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet]
  16. P. Hakansson, M. Wallin and M. Ristinmaa, Comparison of isotropic hardening and kinematic hardening in thermoplasticity. Int. J. Plasticity 21 (2005) 1435–1460. [CrossRef]
  17. S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Kluwer, Dordrecht, Part I (1997), Part II (2000).
  18. D. Knees, On global spatial regularity and convergence rates for time dependent elasto-plasticity. Math. Models Methods Appl. Sci. (2010) DOI: 10.1142/S0218202510004805.
  19. G.A. Maughin, The Thermomechanics of Plasticity and Fracture. Cambridge Univ. Press, Cambridge (1992).
  20. C. Miehe, A theory of large-strain isotropic thermoplasticity based on metric transformation tensor. Archive Appl. Mech. 66 (1995) 45–64.
  21. A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations: Evolut. Diff. Eqs., C. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam (2005) 461–559.
  22. A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: M2AN 43 (2009) 399–428. [CrossRef] [EDP Sciences]
  23. A. Mielke and and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Models of continuum mechanics in analysis and engineering, H.-D. Alber, R. Balean and R. Farwing Eds., Shaker Ver., Aachen (1999) 117–129.
  24. A. Mielke and F. Theil, On rate-independent hysteresis models. Nonlin. Diff. Eq. Appl. 11 (2004) 151–189.
  25. A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. PDE 31 (2008) 387–416. [CrossRef]
  26. T.D.W. Nicholson, Large deformation theory of coupled thermoplasticity including kinematic hardening. Acta Mech. 142 (2000) 207–222. [CrossRef]
  27. P. Rosakis, A.J. Rosakis, G. Ravichandran and J. Hodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48 (2000) 581–607. [CrossRef] [MathSciNet]
  28. T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005).
  29. T. Roubíček, Thermo-visco-elasticity at small strains with L1-data. Quart. Appl. Math. 67 (2009) 47–71. [MathSciNet]
  30. T. Roubíček, Rate independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32 (2009) 825–862. [CrossRef] [MathSciNet]
  31. T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42 (2010) 256–297. [CrossRef] [MathSciNet]
  32. A. Srikanth and N. Zabaras, A computational model for the finite element analysis of thermoplasticity coupled with ductile damage at fonite strains. Int. J. Numer. Methods Eng. 45 (1999) 1569–1605. [CrossRef]
  33. Q. Yang, L. Stainier and M. Ortiz, A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54 (2006) 401–424. [CrossRef] [MathSciNet]
  34. H. Ziegler, A modification of Prager's hardening rule. Quart. Appl. Math. 17 (1959) 55–65. [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you