The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Tunc Geveci
ESAIM: M2AN, 22 2 (1988) 243-250
Published online: 2017-01-31
This article has been cited by the following article(s):
72 articles
Solving Inverse Wave Problems Using Spacetime Radial Basis Functions in Neural Networks
Chih-Yu Liu, Cheng-Yu Ku, Wei-Da Chen, Ying-Fan Lin and Jun-Hong Lin Mathematics 13 (5) 725 (2025) https://doi.org/10.3390/math13050725
Semi- and Fully-Discrete Analysis of Lowest-Order Nonstandard Finite Element Methods for the Biharmonic Wave Problem
Neela Nataraj, Ricardo Ruiz-Baier and Aamir Yousuf Computational Methods in Applied Mathematics (2025) https://doi.org/10.1515/cmam-2025-0002
Fourth order time-stepping VEM for the 2D acoustic wave equations
Gouranga Pradhan and Bhupen Deka Computers & Mathematics with Applications 188 115 (2025) https://doi.org/10.1016/j.camwa.2025.03.030
A Galerkin finite element method for the nonlinear strongly damped wave equation
Tlili Kadri Applicable Analysis 104 (7) 1328 (2025) https://doi.org/10.1080/00036811.2024.2426227
Two-grid mixed finite element analysis of semi-linear second order hyperbolic problem
Jiansong Zhang and Yanyu Liu Computers & Mathematics with Applications 189 70 (2025) https://doi.org/10.1016/j.camwa.2025.03.035
Stability and space/time convergence of Störmer-Verlet time integration of the mixed formulation of linear wave equations
Juliette Chabassier ESAIM: Mathematical Modelling and Numerical Analysis 58 (4) 1441 (2024) https://doi.org/10.1051/m2an/2024047
Mixed approximation of nonlinear acoustic equations: Well-posedness and a priori error analysis
Mostafa Meliani and Vanja Nikolić Applied Numerical Mathematics 198 94 (2024) https://doi.org/10.1016/j.apnum.2023.12.001
On the velocity-stress formulation for geometrically nonlinear elastodynamics and its structure-preserving discretization
Tobias Thoma, Paul Kotyczka and Herbert Egger Mathematical and Computer Modelling of Dynamical Systems 30 (1) 701 (2024) https://doi.org/10.1080/13873954.2024.2397486
On the discrete equivalence of Lagrangian, Hamiltonian and mixed finite element formulations for linear wave phenomena
A. Brugnoli and V. Mehrmann IFAC-PapersOnLine 58 (6) 95 (2024) https://doi.org/10.1016/j.ifacol.2024.08.263
Mixed Virtual Element approximation of linear acoustic wave equation
Franco Dassi, Alessio Fumagalli, Ilario Mazzieri and Giuseppe Vacca IMA Journal of Numerical Analysis 44 (5) 2864 (2024) https://doi.org/10.1093/imanum/drad078
Compact difference scheme for the two-dimensional semilinear wave equation
Najla M. Aloraini and Talha Achouri Applied Numerical Mathematics 202 173 (2024) https://doi.org/10.1016/j.apnum.2024.05.004
Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods
Keyan Wang Open Mathematics 22 (1) (2024) https://doi.org/10.1515/math-2024-0048
Symplectic Hamiltonian Finite Element Methods for Semilinear Wave Propagation
Manuel A. Sánchez and Joaquín Valenzuela Journal of Scientific Computing 99 (3) (2024) https://doi.org/10.1007/s10915-024-02519-z
L2 estimates for weak Galerkin finite element methods for second-order wave equations with polygonal meshes
Naresh Kumar, Jogen Dutta and Bhupen Deka Applied Numerical Mathematics 192 84 (2023) https://doi.org/10.1016/j.apnum.2023.05.009
An asymptotic-preserving discretization scheme for gas transport in pipe networks
H Egger, J Giesselmann, T Kunkel and N Philippi IMA Journal of Numerical Analysis 43 (4) 2137 (2023) https://doi.org/10.1093/imanum/drac032
Energy-preserving mixed finite element methods for the elastic wave equation
Songxin Li and Yongke Wu Applied Mathematics and Computation 422 126963 (2022) https://doi.org/10.1016/j.amc.2022.126963
Developing Stabilizer Free Weak Galerkin finite element method for second-order wave equation
Naresh Kumar and Bhupen Deka Journal of Computational and Applied Mathematics 415 114457 (2022) https://doi.org/10.1016/j.cam.2022.114457
An efficient numerical simulation of the two-dimensional semilinear wave equation
Talha Achouri Computational and Applied Mathematics 41 (8) (2022) https://doi.org/10.1007/s40314-022-02100-0
Irksome: Automating Runge–Kutta Time-stepping for Finite Element Methods
Patrick E. Farrell, Robert C. Kirby and Jorge Marchena-Menéndez ACM Transactions on Mathematical Software 47 (4) 1 (2021) https://doi.org/10.1145/3466168
Structure-preserving discretization of port-Hamiltonian plate models
Andrea Brugnoli, Daniel Alazard, Valérie Pommier-Budinger and Denis Matignon IFAC-PapersOnLine 54 (9) 359 (2021) https://doi.org/10.1016/j.ifacol.2021.06.094
A mixed discontinuous Galerkin method for the wave equation
Limin He, Fei Wang and Jing Wen Computers & Mathematics with Applications 82 60 (2021) https://doi.org/10.1016/j.camwa.2020.12.001
A Mixed Method for Time-Transient Acoustic Wave Propagation in Metamaterials
Jeonghun J. Lee Journal of Scientific Computing 84 (1) (2020) https://doi.org/10.1007/s10915-020-01275-0
A mass-lumped mixed finite element method for acoustic wave propagation
H. Egger and B. Radu Numerische Mathematik 145 (2) 239 (2020) https://doi.org/10.1007/s00211-020-01118-y
Finite difference schemes for the two‐dimensional semilinear wave equation
Talha Achouri Numerical Methods for Partial Differential Equations 35 (1) 200 (2019) https://doi.org/10.1002/num.22297
Expanded mixed finite element method for second order hyperbolic equations
Keyan Wang and Qisheng Wang Computers & Mathematics with Applications 78 (8) 2560 (2019) https://doi.org/10.1016/j.camwa.2019.03.061
Advanced Finite Element Methods with Applications
Herbert Egger and Thomas Kugler Lecture Notes in Computational Science and Engineering, Advanced Finite Element Methods with Applications 128 107 (2019) https://doi.org/10.1007/978-3-030-14244-5_6
Super-convergence and post-processing for mixed finite element approximations of the wave equation
Herbert Egger and Bogdan Radu Numerische Mathematik 140 (2) 427 (2018) https://doi.org/10.1007/s00211-018-0966-2
Mixed finite elements for global tide models with nonlinear damping
Colin J. Cotter, P. Jameson Graber and Robert C. Kirby Numerische Mathematik 140 (4) 963 (2018) https://doi.org/10.1007/s00211-018-0980-4
Analysis of two‐grid discretization scheme for semilinear hyperbolic equations by mixed finite element methods
Keyan Wang and Yanping Chen Mathematical Methods in the Applied Sciences 41 (9) 3370 (2018) https://doi.org/10.1002/mma.4831
Mixed finite element methods for the Rosenau equation
Noureddine Atouani, Yousra Ouali and Khaled Omrani Journal of Applied Mathematics and Computing 57 (1-2) 393 (2018) https://doi.org/10.1007/s12190-017-1112-5
Stormer-Numerov HDG Methods for Acoustic Waves
Bernardo Cockburn, Zhixing Fu, Allan Hungria, et al. Journal of Scientific Computing 75 (2) 597 (2018) https://doi.org/10.1007/s10915-017-0547-z
Damped wave systems on networks: exponential stability and uniform approximations
H. Egger and T. Kugler Numerische Mathematik 138 (4) 839 (2018) https://doi.org/10.1007/s00211-017-0924-4
Two-grid mixed finite element method for nonlinear hyperbolic equations
Keyan Wang and Yanping Chen Computers & Mathematics with Applications 74 (6) 1489 (2017) https://doi.org/10.1016/j.camwa.2017.06.022
Symplectic Hamiltonian HDG methods for wave propagation phenomena
M.A. Sánchez, C. Ciuca, N.C. Nguyen, J. Peraire and B. Cockburn Journal of Computational Physics 350 951 (2017) https://doi.org/10.1016/j.jcp.2017.09.010
Asad Anees and Lutz Angermann 1 (2016) https://doi.org/10.1109/ROPACES.2016.7465375
A class of Galerkin Schemes for Time-Dependent Radiative Transfer
Herbert Egger and Matthias Schlottbom SIAM Journal on Numerical Analysis 54 (6) 3577 (2016) https://doi.org/10.1137/15M1051336
Mixed finite elements for global tide models
Colin J. Cotter and Robert C. Kirby Numerische Mathematik 133 (2) 255 (2016) https://doi.org/10.1007/s00211-015-0748-z
A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography
Eric T. Chung, Chi Yeung Lam and Jianliang Qian GEOPHYSICS 80 (4) T119 (2015) https://doi.org/10.1190/geo2014-0413.1
Symplectic-mixed finite element approximation of linear acoustic wave equations
Robert C. Kirby and Thinh Tri Kieu Numerische Mathematik 130 (2) 257 (2015) https://doi.org/10.1007/s00211-014-0667-4
Optimal error estimates of mixed FEMs for second order hyperbolic integro-differential equations with minimal smoothness on initial data
Samir Karaa and Amiya K. Pani Journal of Computational and Applied Mathematics 275 113 (2015) https://doi.org/10.1016/j.cam.2014.08.009
Stability, Convergence, and Accuracy of Stabilized Finite Element Methods for the Wave Equation in Mixed Form
Santiago Badia, Ramon Codina and Hector Espinoza SIAM Journal on Numerical Analysis 52 (4) 1729 (2014) https://doi.org/10.1137/130918708
Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space
Roland Griesmaier and Peter Monk Journal of Scientific Computing 58 (2) 472 (2014) https://doi.org/10.1007/s10915-013-9741-9
Convergence analysis for hyperbolic evolution problems in mixed form
Daniele Boffi, Annalisa Buffa and Lucia Gastaldi Numerical Linear Algebra with Applications 20 (4) 541 (2013) https://doi.org/10.1002/nla.1861
NonconformingH1-Galerkin Mixed Finite Element Method for Strongly Damped Wave Equations
Dong-yang Shi and Qi-li Tang Numerical Functional Analysis and Optimization 34 (12) 1348 (2013) https://doi.org/10.1080/01630563.2013.809581
AnH1-Galerkin Expanded Mixed Finite Element Approximation of Second-Order Nonlinear Hyperbolic Equations
Zhaojie Zhou, Weiwei Wang and Huanzhen Chen Abstract and Applied Analysis 2013 1 (2013) https://doi.org/10.1155/2013/657952
A priori estimates for two multiscale finite element methods using multiple global fields to wave equations
Lijian Jiang and Yalchin Efendiev Numerical Methods for Partial Differential Equations 28 (6) 1869 (2012) https://doi.org/10.1002/num.20706
A splitting positive definite mixed finite element method for two classes of integro-differential equations
Hui Guo Journal of Applied Mathematics and Computing 39 (1-2) 271 (2012) https://doi.org/10.1007/s12190-011-0527-7
Stability and convergence of fully discrete finite element schemes for the acoustic wave equation
Samir Karaa Journal of Applied Mathematics and Computing 40 (1-2) 659 (2012) https://doi.org/10.1007/s12190-012-0558-8
High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics
N.C. Nguyen, J. Peraire and B. Cockburn Journal of Computational Physics 230 (10) 3695 (2011) https://doi.org/10.1016/j.jcp.2011.01.035
Finite Element θ-Schemes for the Acoustic Wave Equation
Samir Karaa Advances in Applied Mathematics and Mechanics 3 (1) 181 (2011) https://doi.org/10.4208/aamm.10-m1018
Error Estimates for Finite Element Approximations of a Viscous Wave Equation
Samir Karaa Numerical Functional Analysis and Optimization 32 (7) 750 (2011) https://doi.org/10.1080/01630563.2011.580874
Information Computing and Applications
Zhiyan Li, Linghui Liu, Jingguo Qu and Yuhuan Cui Communications in Computer and Information Science, Information Computing and Applications 106 341 (2010) https://doi.org/10.1007/978-3-642-16339-5_45
An H1-Galerkin mixed finite element method for a class of heat transport equations
Zhaojie Zhou Applied Mathematical Modelling 34 (9) 2414 (2010) https://doi.org/10.1016/j.apm.2009.11.007
Parallel Galerkin domain decomposition procedures for wave equation
Tongjun Sun and Keying Ma Journal of Computational and Applied Mathematics 233 (8) 1850 (2010) https://doi.org/10.1016/j.cam.2009.09.022
A splitting positive definite mixed element method for second‐order hyperbolic equations
Jiansong Zhang and Danping Yang Numerical Methods for Partial Differential Equations 25 (3) 622 (2009) https://doi.org/10.1002/num.20363
Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation
Marcus J. Grote and Dominik Schötzau Journal of Scientific Computing 40 (1-3) 257 (2009) https://doi.org/10.1007/s10915-008-9247-z
Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions
Eric T. Chung and Björn Engquist SIAM Journal on Numerical Analysis 47 (5) 3820 (2009) https://doi.org/10.1137/080729062
Optimal Discontinuous Galerkin Methods for Wave Propagation
Eric T. Chung and Björn Engquist SIAM Journal on Numerical Analysis 44 (5) 2131 (2006) https://doi.org/10.1137/050641193
H1-Galerkin Mixed Finite Element Method for the Regularized Long Wave Equation
L. Guo and H. Chen Computing 77 (2) 205 (2006) https://doi.org/10.1007/s00607-005-0158-7
Error estimates for mixed finite element approximations of the viscoelasticity wave equation
Liping Gao, Dong Liang and Bo Zhang Mathematical Methods in the Applied Sciences 27 (17) 1997 (2004) https://doi.org/10.1002/mma.534
Topics in Computational Wave Propagation
Patrick Joly Lecture Notes in Computational Science and Engineering, Topics in Computational Wave Propagation 31 201 (2003) https://doi.org/10.1007/978-3-642-55483-4_6
Mixed finite element method for a single phase quasi-linear Stefan problem with a forcing term in non-divergence form
Mi-Ray Ohm Journal of Mathematical Analysis and Applications 281 (1) 153 (2003) https://doi.org/10.1016/S0022-247X(02)00629-7
A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem
E. Bécache, P. Joly and C. Tsogka SIAM Journal on Numerical Analysis 39 (6) 2109 (2002) https://doi.org/10.1137/S0036142999359189
Mixed finite element method for a strongly damped wave equation
Amiya K. Pani and Jin Yun Yuan Numerical Methods for Partial Differential Equations 17 (2) 105 (2001) https://doi.org/10.1002/1098-2426(200103)17:2<105::AID-NUM2>3.0.CO;2-F
AnH1-Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations
Amiya K. Pani SIAM Journal on Numerical Analysis 35 (2) 712 (1998) https://doi.org/10.1137/S0036142995280808
On the application of mixed finite element method for a strongly nonlinear second-order hyperbolic equation
Ziwen Jiang and Huanzhen Chen Korean Journal of Computational & Applied Mathematics 5 (1) 23 (1998) https://doi.org/10.1007/BF03008933
A Priori Estimates for Mixed Finite Element Approximations of Second-Order Hyperbolic Equations with Absorbing Boundary Conditions
Lawrence C. Cowsar, Todd F. Dupont and Mary F. Wheeler SIAM Journal on Numerical Analysis 33 (2) 492 (1996) https://doi.org/10.1137/0733026
An analysis of Nédélec's method for the spatial discretization of Maxwell's equations
Peter Monk Journal of Computational and Applied Mathematics 47 (1) 101 (1993) https://doi.org/10.1016/0377-0427(93)90093-Q
On mixed finite element methods for linear elastodynamics
Ch. G. Makridakis Numerische Mathematik 61 (1) 235 (1992) https://doi.org/10.1007/BF01385506
Finite Element Methods (Part 1)
J.E. Roberts and J.-M. Thomas Handbook of Numerical Analysis, Finite Element Methods (Part 1) 2 523 (1991) https://doi.org/10.1016/S1570-8659(05)80041-9
A Mixed Method for Approximating Maxwell’s Equations
Peter B. Monk SIAM Journal on Numerical Analysis 28 (6) 1610 (1991) https://doi.org/10.1137/0728081
A priori estimates for mixed finite element methods for the wave equation
Lawrence C. Cowsat, Todd F. Dupont and Mary F. Wheeler Computer Methods in Applied Mechanics and Engineering 82 (1-3) 205 (1990) https://doi.org/10.1016/0045-7825(90)90165-I