Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Solving Inverse Wave Problems Using Spacetime Radial Basis Functions in Neural Networks

Chih-Yu Liu, Cheng-Yu Ku, Wei-Da Chen, Ying-Fan Lin and Jun-Hong Lin
Mathematics 13 (5) 725 (2025)
https://doi.org/10.3390/math13050725

Semi- and Fully-Discrete Analysis of Lowest-Order Nonstandard Finite Element Methods for the Biharmonic Wave Problem

Neela Nataraj, Ricardo Ruiz-Baier and Aamir Yousuf
Computational Methods in Applied Mathematics (2025)
https://doi.org/10.1515/cmam-2025-0002

Two-grid mixed finite element analysis of semi-linear second order hyperbolic problem

Jiansong Zhang and Yanyu Liu
Computers & Mathematics with Applications 189 70 (2025)
https://doi.org/10.1016/j.camwa.2025.03.035

Stability and space/time convergence of Störmer-Verlet time integration of the mixed formulation of linear wave equations

Juliette Chabassier
ESAIM: Mathematical Modelling and Numerical Analysis 58 (4) 1441 (2024)
https://doi.org/10.1051/m2an/2024047

Mixed approximation of nonlinear acoustic equations: Well-posedness and a priori error analysis

Mostafa Meliani and Vanja Nikolić
Applied Numerical Mathematics 198 94 (2024)
https://doi.org/10.1016/j.apnum.2023.12.001

On the velocity-stress formulation for geometrically nonlinear elastodynamics and its structure-preserving discretization

Tobias Thoma, Paul Kotyczka and Herbert Egger
Mathematical and Computer Modelling of Dynamical Systems 30 (1) 701 (2024)
https://doi.org/10.1080/13873954.2024.2397486

On the discrete equivalence of Lagrangian, Hamiltonian and mixed finite element formulations for linear wave phenomena

A. Brugnoli and V. Mehrmann
IFAC-PapersOnLine 58 (6) 95 (2024)
https://doi.org/10.1016/j.ifacol.2024.08.263

Mixed Virtual Element approximation of linear acoustic wave equation

Franco Dassi, Alessio Fumagalli, Ilario Mazzieri and Giuseppe Vacca
IMA Journal of Numerical Analysis 44 (5) 2864 (2024)
https://doi.org/10.1093/imanum/drad078

Symplectic Hamiltonian Finite Element Methods for Semilinear Wave Propagation

Manuel A. Sánchez and Joaquín Valenzuela
Journal of Scientific Computing 99 (3) (2024)
https://doi.org/10.1007/s10915-024-02519-z

L2 estimates for weak Galerkin finite element methods for second-order wave equations with polygonal meshes

Naresh Kumar, Jogen Dutta and Bhupen Deka
Applied Numerical Mathematics 192 84 (2023)
https://doi.org/10.1016/j.apnum.2023.05.009

An asymptotic-preserving discretization scheme for gas transport in pipe networks

H Egger, J Giesselmann, T Kunkel and N Philippi
IMA Journal of Numerical Analysis 43 (4) 2137 (2023)
https://doi.org/10.1093/imanum/drac032

Developing Stabilizer Free Weak Galerkin finite element method for second-order wave equation

Naresh Kumar and Bhupen Deka
Journal of Computational and Applied Mathematics 415 114457 (2022)
https://doi.org/10.1016/j.cam.2022.114457

Irksome: Automating Runge–Kutta Time-stepping for Finite Element Methods

Patrick E. Farrell, Robert C. Kirby and Jorge Marchena-Menéndez
ACM Transactions on Mathematical Software 47 (4) 1 (2021)
https://doi.org/10.1145/3466168

Structure-preserving discretization of port-Hamiltonian plate models

Andrea Brugnoli, Daniel Alazard, Valérie Pommier-Budinger and Denis Matignon
IFAC-PapersOnLine 54 (9) 359 (2021)
https://doi.org/10.1016/j.ifacol.2021.06.094

Finite difference schemes for the two‐dimensional semilinear wave equation

Talha Achouri
Numerical Methods for Partial Differential Equations 35 (1) 200 (2019)
https://doi.org/10.1002/num.22297

Advanced Finite Element Methods with Applications

Herbert Egger and Thomas Kugler
Lecture Notes in Computational Science and Engineering, Advanced Finite Element Methods with Applications 128 107 (2019)
https://doi.org/10.1007/978-3-030-14244-5_6

Super-convergence and post-processing for mixed finite element approximations of the wave equation

Herbert Egger and Bogdan Radu
Numerische Mathematik 140 (2) 427 (2018)
https://doi.org/10.1007/s00211-018-0966-2

Mixed finite elements for global tide models with nonlinear damping

Colin J. Cotter, P. Jameson Graber and Robert C. Kirby
Numerische Mathematik 140 (4) 963 (2018)
https://doi.org/10.1007/s00211-018-0980-4

Analysis of two‐grid discretization scheme for semilinear hyperbolic equations by mixed finite element methods

Keyan Wang and Yanping Chen
Mathematical Methods in the Applied Sciences 41 (9) 3370 (2018)
https://doi.org/10.1002/mma.4831

Mixed finite element methods for the Rosenau equation

Noureddine Atouani, Yousra Ouali and Khaled Omrani
Journal of Applied Mathematics and Computing 57 (1-2) 393 (2018)
https://doi.org/10.1007/s12190-017-1112-5

Symplectic Hamiltonian HDG methods for wave propagation phenomena

M.A. Sánchez, C. Ciuca, N.C. Nguyen, J. Peraire and B. Cockburn
Journal of Computational Physics 350 951 (2017)
https://doi.org/10.1016/j.jcp.2017.09.010

A class of Galerkin Schemes for Time-Dependent Radiative Transfer

Herbert Egger and Matthias Schlottbom
SIAM Journal on Numerical Analysis 54 (6) 3577 (2016)
https://doi.org/10.1137/15M1051336

A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography

Eric T. Chung, Chi Yeung Lam and Jianliang Qian
GEOPHYSICS 80 (4) T119 (2015)
https://doi.org/10.1190/geo2014-0413.1

Optimal error estimates of mixed FEMs for second order hyperbolic integro-differential equations with minimal smoothness on initial data

Samir Karaa and Amiya K. Pani
Journal of Computational and Applied Mathematics 275 113 (2015)
https://doi.org/10.1016/j.cam.2014.08.009

Stability, Convergence, and Accuracy of Stabilized Finite Element Methods for the Wave Equation in Mixed Form

Santiago Badia, Ramon Codina and Hector Espinoza
SIAM Journal on Numerical Analysis 52 (4) 1729 (2014)
https://doi.org/10.1137/130918708

Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space

Roland Griesmaier and Peter Monk
Journal of Scientific Computing 58 (2) 472 (2014)
https://doi.org/10.1007/s10915-013-9741-9

Convergence analysis for hyperbolic evolution problems in mixed form

Daniele Boffi, Annalisa Buffa and Lucia Gastaldi
Numerical Linear Algebra with Applications 20 (4) 541 (2013)
https://doi.org/10.1002/nla.1861

NonconformingH1-Galerkin Mixed Finite Element Method for Strongly Damped Wave Equations

Dong-yang Shi and Qi-li Tang
Numerical Functional Analysis and Optimization 34 (12) 1348 (2013)
https://doi.org/10.1080/01630563.2013.809581

AnH1-Galerkin Expanded Mixed Finite Element Approximation of Second-Order Nonlinear Hyperbolic Equations

Zhaojie Zhou, Weiwei Wang and Huanzhen Chen
Abstract and Applied Analysis 2013 1 (2013)
https://doi.org/10.1155/2013/657952

A priori estimates for two multiscale finite element methods using multiple global fields to wave equations

Lijian Jiang and Yalchin Efendiev
Numerical Methods for Partial Differential Equations 28 (6) 1869 (2012)
https://doi.org/10.1002/num.20706

A splitting positive definite mixed finite element method for two classes of integro-differential equations

Hui Guo
Journal of Applied Mathematics and Computing 39 (1-2) 271 (2012)
https://doi.org/10.1007/s12190-011-0527-7

Stability and convergence of fully discrete finite element schemes for the acoustic wave equation

Samir Karaa
Journal of Applied Mathematics and Computing 40 (1-2) 659 (2012)
https://doi.org/10.1007/s12190-012-0558-8

High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics

N.C. Nguyen, J. Peraire and B. Cockburn
Journal of Computational Physics 230 (10) 3695 (2011)
https://doi.org/10.1016/j.jcp.2011.01.035

Information Computing and Applications

Zhiyan Li, Linghui Liu, Jingguo Qu and Yuhuan Cui
Communications in Computer and Information Science, Information Computing and Applications 106 341 (2010)
https://doi.org/10.1007/978-3-642-16339-5_45

Parallel Galerkin domain decomposition procedures for wave equation

Tongjun Sun and Keying Ma
Journal of Computational and Applied Mathematics 233 (8) 1850 (2010)
https://doi.org/10.1016/j.cam.2009.09.022

A splitting positive definite mixed element method for second‐order hyperbolic equations

Jiansong Zhang and Danping Yang
Numerical Methods for Partial Differential Equations 25 (3) 622 (2009)
https://doi.org/10.1002/num.20363

Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation

Marcus J. Grote and Dominik Schötzau
Journal of Scientific Computing 40 (1-3) 257 (2009)
https://doi.org/10.1007/s10915-008-9247-z

Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions

Eric T. Chung and Björn Engquist
SIAM Journal on Numerical Analysis 47 (5) 3820 (2009)
https://doi.org/10.1137/080729062

Optimal Discontinuous Galerkin Methods for Wave Propagation

Eric T. Chung and Björn Engquist
SIAM Journal on Numerical Analysis 44 (5) 2131 (2006)
https://doi.org/10.1137/050641193

Error estimates for mixed finite element approximations of the viscoelasticity wave equation

Liping Gao, Dong Liang and Bo Zhang
Mathematical Methods in the Applied Sciences 27 (17) 1997 (2004)
https://doi.org/10.1002/mma.534

Mixed finite element method for a single phase quasi-linear Stefan problem with a forcing term in non-divergence form

Mi-Ray Ohm
Journal of Mathematical Analysis and Applications 281 (1) 153 (2003)
https://doi.org/10.1016/S0022-247X(02)00629-7

A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem

E. Bécache, P. Joly and C. Tsogka
SIAM Journal on Numerical Analysis 39 (6) 2109 (2002)
https://doi.org/10.1137/S0036142999359189

On the application of mixed finite element method for a strongly nonlinear second-order hyperbolic equation

Ziwen Jiang and Huanzhen Chen
Korean Journal of Computational & Applied Mathematics 5 (1) 23 (1998)
https://doi.org/10.1007/BF03008933

A Priori Estimates for Mixed Finite Element Approximations of Second-Order Hyperbolic Equations with Absorbing Boundary Conditions

Lawrence C. Cowsar, Todd F. Dupont and Mary F. Wheeler
SIAM Journal on Numerical Analysis 33 (2) 492 (1996)
https://doi.org/10.1137/0733026

A Mixed Method for Approximating Maxwell’s Equations

Peter B. Monk
SIAM Journal on Numerical Analysis 28 (6) 1610 (1991)
https://doi.org/10.1137/0728081

A priori estimates for mixed finite element methods for the wave equation

Lawrence C. Cowsat, Todd F. Dupont and Mary F. Wheeler
Computer Methods in Applied Mechanics and Engineering 82 (1-3) 205 (1990)
https://doi.org/10.1016/0045-7825(90)90165-I