Free Access
Volume 22, Number 2, 1988
Page(s) 243 - 250
Published online 31 January 2017
  1. R. ALEX ANDER, Diagonally implicity Runge-Kutta methods for stiff O.D.E.'s, SIAM J. Numer. Anal. 14 (1977), 1006-1021. [MR: 458890] [Zbl: 0374.65038] [Google Scholar]
  2. D. N. ARNOLD and F. BREZZI, Mixed and non conforming finite elementmethods: Implementation, postprocessing and error estimates, R.A.R.O. Math. Model, and Num. Anal. (M2AN) 1 (1985), 7-32. [EuDML: 193443] [MR: 813687] [Zbl: 0567.65078] [Google Scholar]
  3. D. N. ARNOLD, J. DOUGLAS, Jr., and C. P. GUPTA, A family of higher ordermixed finite element methods for plane elasticity, Numer. Math. 45 (1984), 1-22. [EuDML: 132950] [MR: 761879] [Zbl: 0558.73066] [Google Scholar]
  4. G. A. BAKER and J. H. BRAMBLE, Semidiscrete and single step fully discreteapproximations for second order hyperbolic equations, R.A.I.R.O. Anal. Num. 13 (1979), 75-100. [EuDML: 193340] [MR: 533876] [Zbl: 0405.65057] [Google Scholar]
  5. B. BRENNER,M. CROUZEIX and V. THOMÉE, Single step methods for inhomogeneous linear differential equations in Banach spaces, R.A.I.R.O. Anal. Num. 16 (1982), 5-26. [EuDML: 193391] [MR: 648742] [Zbl: 0477.65040] [Google Scholar]
  6. F. BREZZI,J. DOUGLAS Jr. and L. D MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. [EuDML: 133032] [MR: 799685] [Zbl: 0599.65072] [Google Scholar]
  7. K. BURRAGE, Efficiently implementable algebraically stable Runge-Kutta methods, SIAM J. Numer. Anal. 19 (1982), 245-258. [MR: 650049] [Zbl: 0483.65040] [Google Scholar]
  8. M. CROUZEIX, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, thèse, Paris (1975). [Google Scholar]
  9. [9]M. CROUZEIX and P.-A. RAVIART, Approximation des problèmes d'évolution, preprint, Université de Rennes (1980). [Google Scholar]
  10. V. DOUGALIS and S.M. SERBIN, One some unconditionally stable, higher order methods for numerical solution of the structural dynamics equations, Int. J. Num. Meth. Eng. 18 (1982), 1613-1621. [MR: 680513] [Zbl: 0488.73087] [Google Scholar]
  11. E. GEKELER, Discretization Methods for Stable Initial Value Problems, Springer Lecture Notes in Mathematics 1044 (1984), Springer-Verlag, Berlin, Heidelberg, New York. [MR: 731695] [Zbl: 0518.65050] [Google Scholar]
  12. C. JOHNSON and V. THOMÉE, Error estimates for some mixed finite element methodes for parabolic type problems, R.A.I.R.O. Anal. Num. 15 (1981), 41-78. [EuDML: 193370] [MR: 610597] [Zbl: 0476.65074] [Google Scholar]
  13. P.-A., RAVIART and J.M. THOMAS, A mixed finite element method for 2nd order problems, in Mathematical Aspects of the Element Method, Springer Lecture Notes in Mathematics 606 (1977), Springer-Verlag, Berlin-Heidelberg-New York. [Zbl: 0362.65089] [MR: 483555] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you