Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A priori and a posteriori error analysis of a mixed DG method for the three-field quasi-Newtonian Stokes flow

Lina Zhao
IMA Journal of Numerical Analysis (2024)
https://doi.org/10.1093/imanum/drae067

An inverse problem for Bingham type fluids

Jing Zhao, Jiahong He, Stanisław Migórski and Sylwia Dudek
Journal of Computational and Applied Mathematics 404 113906 (2022)
https://doi.org/10.1016/j.cam.2021.113906

Analysis of estimators for Stokes problem using a mixed approximation

El Akkad Abdeslam and Ahmed Elkhalfi
Boletim da Sociedade Paranaense de Matemática 39 (6) 105 (2021)
https://doi.org/10.5269/bspm.41354

A hybrid high-order method for a class of quasi-Newtonian Stokes equations on general meshes

Yongchao Zhang and Liquan Mei
Applied Mathematics and Computation 366 124741 (2020)
https://doi.org/10.1016/j.amc.2019.124741

The discrete duality finite volume method for a class of quasi‐Newtonian Stokes flows

Zhengkang He, Rui Li, Jie Chen and Zhangxin Chen
Numerical Methods for Partial Differential Equations 35 (6) 2193 (2019)
https://doi.org/10.1002/num.22408

A posteriori error estimation for incompressible viscous fluid with a new boundary condition

Abdeslam El Akkad and Ahmed Elkhalfi
Boletim da Sociedade Paranaense de Matemática 36 (3) 53 (2018)
https://doi.org/10.5269/bspm.v36i3.31770

Convergence analysis for a finite element approximation of a steady model for electrorheological fluids

Luigi C. Berselli, Dominic Breit and Lars Diening
Numerische Mathematik 132 (4) 657 (2016)
https://doi.org/10.1007/s00211-015-0735-4

Medius analysis and comparison results for first-order finite element methods in linear elasticity

C. Carstensen and M. Schedensack
IMA Journal of Numerical Analysis 35 (4) 1591 (2015)
https://doi.org/10.1093/imanum/dru048

A posteriori error estimation based on conservative flux reconstruction for nonconforming finite element approximations to a singularly perturbed reaction–diffusion problem on anisotropic meshes

Bei Zhang, Shaochun Chen and Jikun Zhao
Applied Mathematics and Computation 232 1062 (2014)
https://doi.org/10.1016/j.amc.2014.01.145

Optimal Error Estimates for a Semi-Implicit Euler Scheme for Incompressible Fluids with Shear Dependent Viscosities

Luigi C. Berselli, Lars Diening and Michael Růžička
SIAM Journal on Numerical Analysis 47 (3) 2177 (2009)
https://doi.org/10.1137/080720024

Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis

C. Carstensen
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 84 (1) 3 (2004)
https://doi.org/10.1002/zamm.200410101

Nonlinear Problems in Mathematical Physics and Related Topics II

Lars Diening, Andreas Prohl and Michael Růžička
International Mathematical Series, Nonlinear Problems in Mathematical Physics and Related Topics II 2 89 (2002)
https://doi.org/10.1007/978-1-4615-0701-7_6

Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM

Carsten Carstensen and Stefan A. Funken
Computer Methods in Applied Mechanics and Engineering 191 (8-10) 861 (2001)
https://doi.org/10.1016/S0045-7825(01)00202-X

On Fully Implicit Space-Time Discretization for Motions of Incompressible Fluids with Shear-Dependent Viscosities: The Case $p \le 2 $

Andreas Prohl and Michael Ruzicka
SIAM Journal on Numerical Analysis 39 (1) 214 (2001)
https://doi.org/10.1137/S0036142900371209

A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems

Carsten Carstensen and Stefan Funken
Mathematics of Computation 70 (236) 1353 (2000)
https://doi.org/10.1090/S0025-5718-00-01264-3