Free Access
Issue
ESAIM: M2AN
Volume 32, Number 7, 1998
Page(s) 843 - 858
DOI https://doi.org/10.1051/m2an/1998320708431
Published online 27 January 2017
  1. J. BARANGER and H. El AMRI, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens, RAIRO M2AN 25, 31-48 (1991). [EuDML: 193620] [MR: 1086839] [Zbl: 0712.76068]
  2. J. BARANGER and H. El AMRI, A posteriori error estimators for mixed finite element approximation of some quasi-Newtonian flows, Mat. Aplic. Comp. 10, 89-102 (1991). [MR: 1172087] [Zbl: 0770.76034]
  3. J. BARANGER and K. NAJIB, Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35-49 (1990). [EuDML: 133486] [MR: 1069652] [Zbl: 0702.76007]
  4. J. W. BARRETT and W. B. LIU, Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law, Numer. Math. 64, 433-453 (1993). [EuDML: 133714] [MR: 1213411] [Zbl: 0796.76049]
  5. J. W. BARRETT and W. B. LIU, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68, 437-456 (1994). [MR: 1301740] [Zbl: 0811.76036]
  6. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland (1978). [MR: 520174] [Zbl: 0383.65058]
  7. P. CLÉMENT, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9, 77-84 (1975). [EuDML: 193271] [MR: 400739] [Zbl: 0368.65008]
  8. M. CROUZEIX and P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 3, 33-75 (1973). [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087]
  9. E. DARI, R. DURÁN and C. PADRA, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64, 1017-1033 (1995). [MR: 1284666] [Zbl: 0827.76042]
  10. Q. DU and M. D. GUNZBURGER, Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow, SIAM J. Numer. Anal. 27, 1-19 (1990). [MR: 1034917] [Zbl: 0697.76046]
  11. R. S. FALK and M. E. MORLEY, Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27, 1486-1505 (1990). [MR: 1080333] [Zbl: 0722.73068]
  12. D. M. FALL, Régularité de l'écoulement stationnaire d'un fluide non newtonien, C. R. Acad. Sci. Paris 311, 531-534 (1990). [MR: 1078116] [Zbl: 0717.35016]
  13. V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Springer (1986). [MR: 851383] [Zbl: 0585.65077]
  14. R. KOUHIA and R. STENBERG, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124, 195-212 (1995). [MR: 1343077] [Zbl: 1067.74578]
  15. P. P. MOSOLOV and V. P. MJASNIKOV, A proof of Korn's inequality, Soviet Math. Dokl. 12, 1618-1622 (1971). [Zbl: 0248.52011]
  16. D. SANDRI, Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO M2AN 27, 131-155 (1993). [EuDML: 193698] [MR: 1211613] [Zbl: 0764.76039]
  17. R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62, 445-475 (1994). [MR: 1213837] [Zbl: 0799.65112]
  18. R. VERFÜRTH, A posteriori error estimators for the Stokes equations II non-conforming discretizations, Numer. Math. 60, 235-249 (1991). [EuDML: 133593] [MR: 1133581] [Zbl: 0739.76035]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you