Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Bridging Large Eddy Simulation and Reduced-Order Modeling of Convection-Dominated Flows through Spatial Filtering: Review and Perspectives

Annalisa Quaini, Omer San, Alessandro Veneziani and Traian Iliescu
Fluids 9 (8) 178 (2024)
https://doi.org/10.3390/fluids9080178

Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review

Sibo Cheng, César Quilodrán-Casas, Said Ouala, et al.
IEEE/CAA Journal of Automatica Sinica 10 (6) 1361 (2023)
https://doi.org/10.1109/JAS.2023.123537

3D modeling of generalized Newtonian fluid flow with data assimilation using the least-squares finite element method

Solveigh Averweg, Alexander Schwarz, Carina Schwarz and Jörg Schröder
Computer Methods in Applied Mechanics and Engineering 392 114668 (2022)
https://doi.org/10.1016/j.cma.2022.114668

An optimal control approach to determine resistance‐type boundary conditions from in‐vivo data for cardiovascular simulations

Elisa Fevola, Francesco Ballarin, Laura Jiménez‐Juan, Stephen Fremes, Stefano Grivet‐Talocia, Gianluigi Rozza and Piero Triverio
International Journal for Numerical Methods in Biomedical Engineering 37 (10) (2021)
https://doi.org/10.1002/cnm.3516

Global Sensitivity Analysis for Patient-Specific Aortic Simulations: The Role of Geometry, Boundary Condition and Large Eddy Simulation Modeling Parameters

Huijuan Xu, Davide Baroli and Alessandro Veneziani
Journal of Biomechanical Engineering 143 (2) (2021)
https://doi.org/10.1115/1.4048336

Data assimilation finite element method for the linearized Navier–Stokes equations in the low Reynolds regime

Muriel Boulakia, Erik Burman, Miguel A. Fernández and Colette Voisembert
Inverse Problems 36 (8) 085003 (2020)
https://doi.org/10.1088/1361-6420/ab9161

Transient flow prediction in an idealized aneurysm geometry using data assimilation

Franziska Gaidzik, Daniel Stucht, Christoph Roloff, et al.
Computers in Biology and Medicine 115 103507 (2019)
https://doi.org/10.1016/j.compbiomed.2019.103507

Reducing the impact of geometric errors in flow computations using velocity measurements

David Nolte and Cristóbal Bertoglio
International Journal for Numerical Methods in Biomedical Engineering 35 (6) (2019)
https://doi.org/10.1002/cnm.3203

Relative pressure estimation from velocity measurements in blood flows: State‐of‐the‐art and new approaches

Cristóbal Bertoglio, Rodolfo Nuñez, Felipe Galarce, David Nordsletten and Axel Osses
International Journal for Numerical Methods in Biomedical Engineering 34 (2) (2018)
https://doi.org/10.1002/cnm.2925

Trends in Biomathematics: Modeling, Optimization and Computational Problems

Adélia Sequeira, Jorge Tiago and Telma Guerra
Trends in Biomathematics: Modeling, Optimization and Computational Problems 27 (2018)
https://doi.org/10.1007/978-3-319-91092-5_3

Physically consistent data assimilation method based on feedback control for patient‐specific blood flow analysis

Satoshi Ii, Mohd Azrul Hisham Mohd Adib, Yoshiyuki Watanabe and Shigeo Wada
International Journal for Numerical Methods in Biomedical Engineering 34 (1) (2018)
https://doi.org/10.1002/cnm.2910

Patient‐specific CFD modelling in the thoracic aorta with PC‐MRI–based boundary conditions: A least‐square three‐element Windkessel approach

Rodrigo M. Romarowski, Adrien Lefieux, Simone Morganti, Alessandro Veneziani and Ferdinando Auricchio
International Journal for Numerical Methods in Biomedical Engineering 34 (11) (2018)
https://doi.org/10.1002/cnm.3134

Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta

Silvia Bozzi, Umberto Morbiducci, Diego Gallo, et al.
Computer Methods in Biomechanics and Biomedical Engineering 20 (10) 1104 (2017)
https://doi.org/10.1080/10255842.2017.1334770

Combining existing numerical models with data assimilation using weighted least‐squares finite element methods

Prathish K. Rajaraman, T. A. Manteuffel, M. Belohlavek and Jeffrey J. Heys
International Journal for Numerical Methods in Biomedical Engineering 33 (1) (2017)
https://doi.org/10.1002/cnm.2783

The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications

A. Quarteroni, A. Manzoni and C. Vergara
Acta Numerica 26 365 (2017)
https://doi.org/10.1017/S0962492917000046

Minimizing the blood velocity differences between phase-contrast magnetic resonance imaging and computational fluid dynamics simulation in cerebral arteries and aneurysms

Mohd Azrul Hisham Mohd Adib, Satoshi Ii, Yoshiyuki Watanabe and Shigeo Wada
Medical & Biological Engineering & Computing 55 (9) 1605 (2017)
https://doi.org/10.1007/s11517-017-1617-y

A velocity tracking approach for the data assimilation problem in blood flow simulations

J. Tiago, T. Guerra and A. Sequeira
International Journal for Numerical Methods in Biomedical Engineering 33 (10) (2017)
https://doi.org/10.1002/cnm.2856

Geometric multiscale modeling of the cardiovascular system, between theory and practice

A. Quarteroni, A. Veneziani and C. Vergara
Computer Methods in Applied Mechanics and Engineering 302 193 (2016)
https://doi.org/10.1016/j.cma.2016.01.007

Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization

Laura Azzimonti, Laura M. Sangalli, Piercesare Secchi, Maurizio Domanin and Fabio Nobile
Journal of the American Statistical Association 110 (511) 1057 (2015)
https://doi.org/10.1080/01621459.2014.946036

Mixed Finite Elements for Spatial Regression with PDE Penalization

Laura Azzimonti, Fabio Nobile, Laura M. Sangalli and Piercesare Secchi
SIAM/ASA Journal on Uncertainty Quantification 2 (1) 305 (2014)
https://doi.org/10.1137/130925426

Fluid-Structure Interaction and Biomedical Applications

Luca Bertagna, Marta D’Elia, Mauro Perego and Alessandro Veneziani
Advances in Mathematical Fluid Mechanics, Fluid-Structure Interaction and Biomedical Applications 395 (2014)
https://doi.org/10.1007/978-3-0348-0822-4_6

Inverse problems in Cardiovascular Mathematics: toward patient‐specific data assimilation and optimization

Alessandro Veneziani and Christian Vergara
International Journal for Numerical Methods in Biomedical Engineering 29 (7) 723 (2013)
https://doi.org/10.1002/cnm.2566

Numerical Comparison and Calibration of Geometrical Multiscale Models for the Simulation of Arterial Flows

A. Cristiano I. Malossi and Jean Bonnemain
Cardiovascular Engineering and Technology 4 (4) 440 (2013)
https://doi.org/10.1007/s13239-013-0151-9