Volume 47, Number 4, July-August 2013
Direct and inverse modeling of the cardiovascular and respiratory systems
Page(s) 1037 - 1057
Published online 13 June 2013
  1. C. Bertoglio, P. Moireau and Jean-Frédéric Gerbeau, Sequential parameter estimation for fluid-structure problems. Application to hemodynamics. Inter. J. Numer. Methods Biomed. Eng. 28 (2012) 434–455. RR-7657. [CrossRef] [Google Scholar]
  2. J. Blum, F.X. Le Dimet and I.M. Navon, Data Assimilation for Geophysical Fluids, Handbook of numerical analysis, vol. XIV, chapter 9. Elsevier (2005). [Google Scholar]
  3. D.C. Boes, FA Graybill and A.M. Mood, Introduction to the Theory of Statistics. McGraw-Hill (1974). [Google Scholar]
  4. D. Calvetti and E. Somersalo, Subjective knowledge or objective belief? an oblique look to bayesian methods, in Large-Scale Inverse Problems and Quantification of Uncertainty, edited by G. Biros et al. Wiley Online Library (2011) 33–70. [Google Scholar]
  5. M. D’Elia, Ph.D. thesis. [Google Scholar]
  6. M. D’Elia, L. Mirabella, T. Passerini, M. Perego, M. Piccinelli, C. Vergara and A. Veneziani, Applications of Variational Data Assimilation in Computational Hemodynamics, chapter 12. MS & A. Springer (2011) 363–394. [Google Scholar]
  7. M. D’Elia, M. Perego and A. Veneziani, A variational Data Assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics. Technical Report TR-2010-19, Department of Mathematics and Computer Science, Emory University, To appear in J. Sci. Comput. Available on (2010). [Google Scholar]
  8. P.M. den Reijer, D. Sallee, P. van der Velden, E. Zaaijer, W.J. Parks, S. Ramamurthy, T. Robbie, G. Donati C. Lamphier, R. Beekman and M. Brummer, Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12 (2010) 4. [CrossRef] [PubMed] [Google Scholar]
  9. H.A. Van der Vorst and C. Vuik, Gmresr: a family of nested gmres methods. Numer. Linear Algebra Appl. 1 (1994) 369–386. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.P. Dwight, Bayesian inference for data assimilation using Least-Squares Finite Element methods, in IOP Conf. Ser. Mat. Sci. Eng., vol. 10. IOP Publishing (2010) 012224. [Google Scholar]
  11. L. Formaggia, A. Veneziani and C. Vergara. SIAM J. Sci. Comput. (2008). [Google Scholar]
  12. L. Formaggia, A. Veneziani and C. Vergara. Comput. Methods Appl. Mech. Eng. (2010). [Google Scholar]
  13. M. Frangos, Y. Marzouk, K. Willcox and B. van Bloemen Waanders, Surrogate and reduced-order modeling: A comparison of approaches for large-scale statistical inverse problems. Large-Scale Inverse Problems and Quantification of Uncertainty (2010) 123–149. [Google Scholar]
  14. M.D. Gunzburger, Perspectives in flow control and optimization. Society for Industrial Mathematics 5 (2003). [Google Scholar]
  15. Per Christian Hansen, Rank-deficient and discrete ill-posed problems. SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1998). [Google Scholar]
  16. J.J. Heys, T.A. Manteuffel, S.F. McCormick, M. Milano, J. Westerdale and M. Belohlavek, Weighted least-squares finite elements based on particle imaging velocimetry data. J. Comput. Phys. 229 (2010) 107–118. [CrossRef] [Google Scholar]
  17. J. G. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux pressure conditions for the incompressible navier-stokes equations. Int. J. Numer. Methods Fluids 22 (1996) 325–352. [Google Scholar]
  18. R.A. Johnson and D.W. Wichern, Applied multivariate statistical analysis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1988). [Google Scholar]
  19. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems. Springer (2005). [Google Scholar]
  20. E.M. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82 (1960) 35–45. [Google Scholar]
  21. D. Kay, D. Loghin and A. Wathen, A preconditioner for the steady-state navier–stokes equations. SIAM J. Sci. Comput. 24 (2002) 237–256. [CrossRef] [Google Scholar]
  22. P. Moireau, C. Bertoglio, N. Xiao, C. Figueroa, C. Taylor, D. Chapelle and J.-F. Gerbeau, Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomechanics and Modeling in Mechanobiology. Published Online (2012) 1–22. [Google Scholar]
  23. P. Moireau and D. Chapelle, Reduced-order unscented kalman filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2011) 380–405. [CrossRef] [EDP Sciences] [Google Scholar]
  24. J. Nocedal and S. Wright, Numerical Optimization. Springer (2000). [Google Scholar]
  25. M. Perego, A. Veneziani and C. Vergara, A variational approach for estimating the compliance of the cardiovascular tissue: An inverse fluid-structure interaction problem. SIAM J. Sci. Comput. 33 (2011) 1181–1211. [CrossRef] [Google Scholar]
  26. A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1 (2011) 3. [CrossRef] [MathSciNet] [Google Scholar]
  27. D. Silvester, H. Elman, D. Kay and A. Wathen, Efficient preconditioning of the linearized navier-stokes equations for incompressible flow. J. Comput. Appl. Math. 128 (2001) 261–279. [CrossRef] [Google Scholar]
  28. A. Tarantola, Inverse problem theory and methods for model parameter estimation. Society for Industrial Mathematics (2005). [Google Scholar]
  29. A. Veneziani, Boundary conditions for blood flow problems, in Proc. of ENUMATH97, edited by R. Rannacher et al., World Sci. Publishing (1998). [Google Scholar]
  30. A. Veneziani, Mathematical and Numerical Modeling of Blood flow Problems. Ph.D. thesis, Politecnico di Milano, Italy (1998). [Google Scholar]
  31. C. Vuik, New insights in gmres-like methods with variable preconditioners. J. Comput. Appl. Math. 61 (1995) 189–204. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you