Issue |
ESAIM: M2AN
Volume 47, Number 4, July-August 2013
Direct and inverse modeling of the cardiovascular and respiratory systems
|
|
---|---|---|
Page(s) | 1037 - 1057 | |
DOI | https://doi.org/10.1051/m2an/2012056 | |
Published online | 13 June 2013 |
Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem
Dept. of Mathematics and Computer Science, Emory University, 400 Dowman
Drive, Atlanta, GA 30322, USA.
mdelia2@mathcs.emory.edu; ale@mathcs.emory.edu
Received:
24
December
2011
The reliable and effective assimilation of measurements and numerical simulations in engineering applications involving computational fluid dynamics is an emerging problem as soon as new devices provide more data. In this paper we are mainly driven by hemodynamics applications, a field where the progressive increment of measures and numerical tools makes this problem particularly up-to-date. We adopt a Bayesian approach to the inclusion of noisy data in the incompressible steady Navier-Stokes equations (NSE). The purpose is the quantification of uncertainty affecting velocity and flow related variables of interest, all treated as random variables. The method consists in the solution of an optimization problem where the misfit between data and velocity - in a convenient norm - is minimized under the constraint of the NSE. We derive classical point estimators, namely the maximum a posteriori – MAP – and the maximum likelihood – ML – ones. In addition, we obtain confidence regions for velocity and wall shear stress, a flow related variable of medical relevance. Numerical simulations in 2-dimensional and axisymmetric 3-dimensional domains show the gain yielded by the introduction of a complete statistical knowledge in the assimilation process.
Mathematics Subject Classification: 76D06 / 76M10 / 62F15 / 60H30
Key words: Computational fluid dynamics / optimization / uncertainty quantification / statistical inverse problems / data assimilation / hemodynamics
© EDP Sciences, SMAI, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.