Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Nečas-Lions inequality with symmetric gradients on star-shaped domains based on a first order Babuška-Aziz inequality

Michele Botti and Lorenzo Mascotto
Journal of Mathematical Analysis and Applications 545 (2) 129159 (2025)
https://doi.org/10.1016/j.jmaa.2024.129159

A modular Poincaré–Wirtinger inequality for Sobolev spaces with variable exponents

Elisa Davoli, Giovanni Di Fratta, Alberto Fiorenza and Leon Happ
Nonlinear Differential Equations and Applications NoDEA 31 (5) (2024)
https://doi.org/10.1007/s00030-024-00977-w

Error estimates for physics-informed neural networks approximating the Navier–Stokes equations

Tim De Ryck, Ameya D Jagtap and Siddhartha Mishra
IMA Journal of Numerical Analysis 44 (1) 83 (2024)
https://doi.org/10.1093/imanum/drac085

Stability and Interpolation Properties for Stokes-Like Virtual Element Spaces

Jian Meng, Lourenço Beirão da Veiga and Lorenzo Mascotto
Journal of Scientific Computing 94 (3) (2023)
https://doi.org/10.1007/s10915-023-02112-w

A staggered cell‐centered finite element method for Stokes problems with variable viscosity on general meshes

Nguyen Huu Du and Thanh Hai Ong
Numerical Methods for Partial Differential Equations 39 (2) 1729 (2023)
https://doi.org/10.1002/num.22952

A unified divergent approach to Hardy–Poincaré inequalities in classical and variable Sobolev spaces

Giovanni Di Fratta and Alberto Fiorenza
Journal of Functional Analysis 283 (5) 109552 (2022)
https://doi.org/10.1016/j.jfa.2022.109552

Interpolation and stability estimates for edge and face virtual elements of general order

L. Beirão da Veiga, L. Mascotto and J. Meng
Mathematical Models and Methods in Applied Sciences 32 (08) 1589 (2022)
https://doi.org/10.1142/S0218202522500373

General theory of interpolation error estimates on anisotropic meshes

Hiroki Ishizaka, Kenta Kobayashi and Takuya Tsuchiya
Japan Journal of Industrial and Applied Mathematics 38 (1) 163 (2021)
https://doi.org/10.1007/s13160-020-00433-z

Trefftz Finite Elements on Curvilinear Polygons

Akash Anand, Jeffrey S. Ovall, Samuel E. Reynolds and Steffen Weißer
SIAM Journal on Scientific Computing 42 (2) A1289 (2020)
https://doi.org/10.1137/19M1294046

Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization

Houman Owhadi and Clint Scovel
Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization (2019)
https://doi.org/10.1017/9781108594967

Differential and Integral Inequalities

Allal Guessab and Gradimir V. Milovanović
Springer Optimization and Its Applications, Differential and Integral Inequalities 151 391 (2019)
https://doi.org/10.1007/978-3-030-27407-8_11

Contrast Independent Localization of Multiscale Problems

Fredrik Hellman and Axel Målqvist
Multiscale Modeling & Simulation 15 (4) 1325 (2017)
https://doi.org/10.1137/16M1100460

Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces

Xiaolin Li
Applied Numerical Mathematics 99 77 (2016)
https://doi.org/10.1016/j.apnum.2015.07.006

Interpolation error estimates for harmonic coordinates on polytopes

Andrew Gillette and Alexander Rand
ESAIM: Mathematical Modelling and Numerical Analysis 50 (3) 651 (2016)
https://doi.org/10.1051/m2an/2015096

On the stability of the moving least squares approximation and the element-free Galerkin method

Xiaolin Li and Shuling Li
Computers & Mathematics with Applications 72 (6) 1515 (2016)
https://doi.org/10.1016/j.camwa.2016.06.047

The nonconforming virtual element method

Blanca Ayuso de Dios, Konstantin Lipnikov and Gianmarco Manzini
ESAIM: Mathematical Modelling and Numerical Analysis 50 (3) 879 (2016)
https://doi.org/10.1051/m2an/2015090

Finite element differential forms on curvilinear cubic meshes and their approximation properties

Douglas N. Arnold, Daniele Boffi and Francesca Bonizzoni
Numerische Mathematik 129 (1) 1 (2015)
https://doi.org/10.1007/s00211-014-0631-3

Quadratic serendipity finite elements on polygons using generalized barycentric coordinates

Alexander Rand, Andrew Gillette and Chandrajit Bajaj
Mathematics of Computation 83 (290) 2691 (2014)
https://doi.org/10.1090/S0025-5718-2014-02807-X

Interpolation error estimates for mean value coordinates over convex polygons

Alexander Rand, Andrew Gillette and Chandrajit Bajaj
Advances in Computational Mathematics 39 (2) 327 (2013)
https://doi.org/10.1007/s10444-012-9282-z

Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs

Alexandre Ern and Martin Vohralík
SIAM Journal on Scientific Computing 35 (4) A1761 (2013)
https://doi.org/10.1137/120896918

Error estimates for generalized barycentric interpolation

Andrew Gillette, Alexander Rand and Chandrajit Bajaj
Advances in Computational Mathematics 37 (3) 417 (2012)
https://doi.org/10.1007/s10444-011-9218-z

Higher Order BEM-Based FEM on Polygonal Meshes

Sergej Rjasanow and Steffen Weißer
SIAM Journal on Numerical Analysis 50 (5) 2357 (2012)
https://doi.org/10.1137/110849481

Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems

Linda El Alaoui, Alexandre Ern and Martin Vohralík
Computer Methods in Applied Mechanics and Engineering 200 (37-40) 2782 (2011)
https://doi.org/10.1016/j.cma.2010.03.024

On convergence of nonconforming convex quadrilateral finite elements AGQ6

Rado Flajs, Song Cen and Miran Saje
Computer Methods in Applied Mechanics and Engineering 199 (25-28) 1816 (2010)
https://doi.org/10.1016/j.cma.2010.02.006

Mixed Finite Elements, Compatibility Conditions, and Applications

Ricardo G. Durán
Lecture Notes in Mathematics, Mixed Finite Elements, Compatibility Conditions, and Applications 1939 1 (2008)
https://doi.org/10.1007/978-3-540-78319-0_1

Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes

V. Dolejší, M. Feistauer and J. Hozman
Computer Methods in Applied Mechanics and Engineering 196 (29-30) 2813 (2007)
https://doi.org/10.1016/j.cma.2006.09.025

On a stabilized colocated Finite Volume scheme for the Stokes problem

Robert Eymard, Raphaèle Herbin and Jean Claude Latché
ESAIM: Mathematical Modelling and Numerical Analysis 40 (3) 501 (2006)
https://doi.org/10.1051/m2an:2006024

Analysis of the discontinuous Galerkin method for nonlinear convection–diffusion problems

V. Dolejší, M. Feistauer and V. Sobotíková
Computer Methods in Applied Mechanics and Engineering 194 (25-26) 2709 (2005)
https://doi.org/10.1016/j.cma.2004.07.017

Error estimates for Modified Local Shepard's Formulas in Sobolev spaces

Carlos Zuppa
ESAIM: Mathematical Modelling and Numerical Analysis 37 (6) 973 (2003)
https://doi.org/10.1051/m2an:2003063