Issue |
ESAIM: M2AN
Volume 33, Number 4, July August 1999
|
|
---|---|---|
Page(s) | 715 - 719 | |
DOI | https://doi.org/10.1051/m2an:1999159 | |
Published online | 15 August 2002 |
A note on polynomial approximation in Sobolev spaces
Fakultät für Mathematik, Ruhr-Universität Bochum,
44780 Bochum, Germany. rv@silly.num1.ruhr-uni-bochum.de.
Received:
29
October
1997
Revised:
28
August
1998
For domains which are star-shaped w.r.t. at least one point, we give new bounds on the constants in Jackson-inequalities in Sobolev spaces. For convex domains, these bounds do not depend on the eccentricity. For non-convex domains with a re-entrant corner, the bounds are uniform w.r.t. the exterior angle. The main tool is a new projection operator onto the space of polynomials.
Résumé
Pour des domaines étoilés on donne de nouvelles bornes sur les constantes dans les inégalités de Jackson pour les espaces de Sobolev. Pour des domaines convexes, les bornes ne dépendent pas de l'excentricité. Pour des domaines non-convexes ayant un point rentrant, les bornes sont uniformes par rapport à l'angle extérieur. L'outil central est un nouvel opérateur de projection sur l'espace des polynômes.
Mathematics Subject Classification: 41A17 / 41A10 / 65N15 / 65N30
Key words: Jackson inequalities / polynomial approximation / Sobolev spaces.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.