Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Three types of quasi-Trefftz functions for the 3D convected Helmholtz equation: construction and approximation properties

Lise-Marie Imbert-Gérard and Guillaume Sylvand
IMA Journal of Numerical Analysis (2024)
https://doi.org/10.1093/imanum/drae060

Phase-Informed Discontinuous Galerkin Method for Extremely High-Frequency Wave Modeling

Haoqiang Feng, Jianping Huang, Caipin Li, Kang Liu, Yi-Yao Wang, Wei E. I. Sha and Qiwei Zhan
IEEE Transactions on Antennas and Propagation 72 (8) 6614 (2024)
https://doi.org/10.1109/TAP.2024.3427389

A High-Order Ultraweak Variational Formulation for Electromagnetic Waves Utilizing Curved Elements

Timo Lähivaara, William F. Hall, Matti Malinen, Dale Ota, Vijaya Shankar and Peter Monk
IEEE Transactions on Antennas and Propagation 72 (5) 4440 (2024)
https://doi.org/10.1109/TAP.2024.3373063

Approximation Properties of Vectorial Exponential Functions

Christophe Buet, Bruno Despres and Guillaume Morel
Communications on Applied Mathematics and Computation 6 (3) 1801 (2024)
https://doi.org/10.1007/s42967-023-00310-9

A high-order multiscale discontinuous Galerkin method for two-dimensional Schrödinger equation in quantum transport

Bo Dong and Wei Wang
Journal of Computational and Applied Mathematics 418 114701 (2023)
https://doi.org/10.1016/j.cam.2022.114701

An efficient neural network method with plane wave activation functions for solving Helmholtz equation

Tao Cui, Ziming Wang and Xueshuang Xiang
Computers & Mathematics with Applications 111 34 (2022)
https://doi.org/10.1016/j.camwa.2022.02.004

Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation

Hélène Barucq, Abderrahmane Bendali, Julien Diaz and Sébastien Tordeux
Journal of Computational Physics 441 110449 (2021)
https://doi.org/10.1016/j.jcp.2021.110449

Generalized plane wave discontinuous Galerkin methods for nonhomogeneous Helmholtz equations with variable wave numbers

Long Yuan and Qiya Hu
International Journal of Computer Mathematics 97 (4) 920 (2020)
https://doi.org/10.1080/00207160.2019.1616177

A discontinuous Galerkin Trefftz type method for solving the two dimensional Maxwell equations

Håkon Sem Fure, Sébastien Pernet, Margot Sirdey and Sébastien Tordeux
SN Partial Differential Equations and Applications 1 (4) (2020)
https://doi.org/10.1007/s42985-020-00024-0

High-order multiscale discontinuous Galerkin methods for the one-dimensional stationary Schrödinger equation

Bo Dong and Wei Wang
Journal of Computational and Applied Mathematics 380 112962 (2020)
https://doi.org/10.1016/j.cam.2020.112962

Trefftz discontinuous Galerkin basis functions for a class of Friedrichs systems coming from linear transport

Christophe Buet, Bruno Despres and Guillaume Morel
Advances in Computational Mathematics 46 (3) (2020)
https://doi.org/10.1007/s10444-020-09755-5

A combined scheme of the local spectral element method and the generalized plane wave discontinuous Galerkin method for the anisotropic Helmholtz equation

Long Yuan
Applied Numerical Mathematics 150 341 (2020)
https://doi.org/10.1016/j.apnum.2019.10.012

A Primal-Dual Weak Galerkin Finite Element Method for Fokker--Planck Type Equations

Chunmei Wang and Junping Wang
SIAM Journal on Numerical Analysis 58 (5) 2632 (2020)
https://doi.org/10.1137/17M1126618

A Trefftz Discontinuous Galerkin method for time-harmonic waves with a generalized impedance boundary condition

Shelvean Kapita, Peter Monk and Virginia Selgas
Applicable Analysis 99 (3) 379 (2020)
https://doi.org/10.1080/00036811.2018.1498965

Numerical Mathematics and Advanced Applications ENUMATH 2017

Scott Congreve, Joscha Gedicke and Ilaria Perugia
Lecture Notes in Computational Science and Engineering, Numerical Mathematics and Advanced Applications ENUMATH 2017 126 493 (2019)
https://doi.org/10.1007/978-3-319-96415-7_44

A variant of the plane wave least squares method for the time-harmonic Maxwell’s equations

Qiya Hu and Rongrong Song
ESAIM: Mathematical Modelling and Numerical Analysis 53 (1) 85 (2019)
https://doi.org/10.1051/m2an/2018043

Trefftz approximations in complex media: Accuracy and applications

Igor Tsukerman, Shampy Mansha, Y.D. Chong and Vadim A. Markel
Computers & Mathematics with Applications 77 (6) 1770 (2019)
https://doi.org/10.1016/j.camwa.2018.08.065

A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations

Qiya Hu and Long Yuan
Advances in Computational Mathematics 44 (1) 245 (2018)
https://doi.org/10.1007/s10444-017-9542-z

A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers

Ruishu Wang, Xiaoshen Wang, Qilong Zhai and Kai Zhang
Numerical Methods for Partial Differential Equations 34 (3) 1009 (2018)
https://doi.org/10.1002/num.22242

Trefftz Discontinuous Galerkin Method for Friedrichs Systems with Linear Relaxation: Application to the P 1 Model

Guillaume Morel, Christophe Buet and Bruno Despres
Computational Methods in Applied Mathematics 18 (3) 521 (2018)
https://doi.org/10.1515/cmam-2018-0006

A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber

Chi Yeung Lam and Chi-Wang Shu
Computer Methods in Applied Mechanics and Engineering 318 456 (2017)
https://doi.org/10.1016/j.cma.2017.01.032

A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation

H. Barucq, A. Bendali, M. Fares, V. Mattesi and S. Tordeux
Journal of Computational Physics 330 1069 (2017)
https://doi.org/10.1016/j.jcp.2016.09.062

Learning dominant wave directions for plane wave methods for high-frequency Helmholtz equations

Jun Fang, Jianliang Qian, Leonardo Zepeda-Núñez and Hongkai Zhao
Research in the Mathematical Sciences 4 (1) (2017)
https://doi.org/10.1186/s40687-017-0098-9

A priorierror analysis of space–time Trefftz discontinuous Galerkin methods for wave problems

Fritz Kretzschmar, Andrea Moiola, Ilaria Perugia and Sascha M. Schnepp
IMA Journal of Numerical Analysis 36 (4) 1599 (2016)
https://doi.org/10.1093/imanum/drv064

A plane wave virtual element method for the Helmholtz problem

Ilaria Perugia, Paola Pietra and Alessandro Russo
ESAIM: Mathematical Modelling and Numerical Analysis 50 (3) 783 (2016)
https://doi.org/10.1051/m2an/2015066

An Unconditionally Stable Discontinuous Galerkin Method for the Elastic Helmholtz Equations with Large Frequency

Xiaobing Feng and Cody Lorton
Journal of Scientific Computing 69 (2) 841 (2016)
https://doi.org/10.1007/s10915-016-0219-4

Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the $$hp$$ h p -Version

R. Hiptmair, A. Moiola and I. Perugia
Foundations of Computational Mathematics 16 (3) 637 (2016)
https://doi.org/10.1007/s10208-015-9260-1

A comparison of high-order polynomial and wave-based methods for Helmholtz problems

Alice Lieu, Gwénaël Gabard and Hadrien Bériot
Journal of Computational Physics 321 105 (2016)
https://doi.org/10.1016/j.jcp.2016.05.045

Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations

Ralf Hiptmair, Andrea Moiola and Ilaria Perugia
Lecture Notes in Computational Science and Engineering, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations 114 237 (2016)
https://doi.org/10.1007/978-3-319-41640-3_8

A New Multiscale Discontinuous Galerkin Method for the One-Dimensional Stationary Schrödinger Equation

Bo Dong, Chi-Wang Shu and Wei Wang
Journal of Scientific Computing 66 (1) 321 (2016)
https://doi.org/10.1007/s10915-015-0022-7

Residual-Based Adaptivity and PWDG Methods for the Helmholtz Equation

Shelvean Kapita, Peter Monk and Timothy Warburton
SIAM Journal on Scientific Computing 37 (3) A1525 (2015)
https://doi.org/10.1137/140967696

Numerical Mathematics and Advanced Applications - ENUMATH 2013

Paola F. Antonietti, Ilaria Perugia and Zaliani Davide
Lecture Notes in Computational Science and Engineering, Numerical Mathematics and Advanced Applications - ENUMATH 2013 103 557 (2015)
https://doi.org/10.1007/978-3-319-10705-9_55

A Posteriori Error Estimation of $hp$-$dG$ Finite Element Methods for Highly Indefinite Helmholtz Problems

S. Sauter and J. Zech
SIAM Journal on Numerical Analysis 53 (5) 2414 (2015)
https://doi.org/10.1137/140973955

Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes

Ralf Hiptmair, Andrea Moiola and Ilaria Perugia
Applied Numerical Mathematics 79 79 (2014)
https://doi.org/10.1016/j.apnum.2012.12.004

Implementation of an interior point source in the ultra weak variational formulation through source extraction

C.J. Howarth, P.N. Childs and A. Moiola
Journal of Computational and Applied Mathematics 271 295 (2014)
https://doi.org/10.1016/j.cam.2014.04.017

Error estimates for the ultra weak variational formulation in linear elasticity

Teemu Luostari, Tomi Huttunen and Peter Monk
ESAIM: Mathematical Modelling and Numerical Analysis 47 (1) 183 (2013)
https://doi.org/10.1051/m2an/2012025

Improvements for the ultra weak variational formulation

T. Luostari, T. Huttunen and P. Monk
International Journal for Numerical Methods in Engineering 94 (6) 598 (2013)
https://doi.org/10.1002/nme.4469

Numerical Analysis of Multiscale Problems

S. Esterhazy and J. M. Melenk
Lecture Notes in Computational Science and Engineering, Numerical Analysis of Multiscale Problems 83 285 (2012)
https://doi.org/10.1007/978-3-642-22061-6_9

The Ultra Weak Variational Formulation Using Bessel Basis Functions

Teemu Luostari, Tomi Huttunen and Peter Monk
Communications in Computational Physics 11 (2) 400 (2012)
https://doi.org/10.4208/cicp.121209.040111s

Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version

R. Hiptmair, A. Moiola and I. Perugia
SIAM Journal on Numerical Analysis 49 (1) 264 (2011)
https://doi.org/10.1137/090761057

Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation

J. M. Melenk and S. Sauter
SIAM Journal on Numerical Analysis 49 (3) 1210 (2011)
https://doi.org/10.1137/090776202

Plane wave approximation of homogeneous Helmholtz solutions

A. Moiola, R. Hiptmair and I. Perugia
Zeitschrift für angewandte Mathematik und Physik 62 (5) 809 (2011)
https://doi.org/10.1007/s00033-011-0147-y

Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions

J. Melenk and S. Sauter
Mathematics of Computation 79 (272) 1871 (2010)
https://doi.org/10.1090/S0025-5718-10-02362-8

Plane wave discontinuous Galerkin methods: Analysis of theh-version

Claude J. Gittelson, Ralf Hiptmair and Ilaria Perugia
ESAIM: Mathematical Modelling and Numerical Analysis 43 (2) 297 (2009)
https://doi.org/10.1051/m2an/2009002

Domain Decomposition Methods in Science and Engineering XVIII

Ralf Hiptmair and Ilaria Perugia
Lecture Notes in Computational Science and Engineering, Domain Decomposition Methods in Science and Engineering XVIII 70 51 (2009)
https://doi.org/10.1007/978-3-642-02677-5_5