Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Local well‐posedness for an isentropic compressible Ginzburg–Landau–Navier–Stokes with vacuum

Jishan Fan, Yuxi Hu and Gen Nakamura
Mathematische Nachrichten 294 (5) 862 (2021)
https://doi.org/10.1002/mana.201900249

Weak-very weak uniqueness to the time-dependent Ginzburg–Landau model for superconductivity in Rn

Hongjun Gao, Jishan Fan and Gen Nakamura
Results in Applied Mathematics 12 100183 (2021)
https://doi.org/10.1016/j.rinam.2021.100183

Global well-posedness of axially symmetric weak solutions to the Ginzburg–Landau model in superconductivity

Shengqi Lu, Miaochao Chen and Qilin Liu
Applicable Analysis 100 (10) 2163 (2021)
https://doi.org/10.1080/00036811.2019.1679786

Regularity Criteria for a Ginzburg–Landau–Navier–Stokes in a Bounded Domain

Jishan Fan, Zhaoyun Zhang and Yong Zhou
Bulletin of the Malaysian Mathematical Sciences Society 43 (1) 1009 (2020)
https://doi.org/10.1007/s40840-019-00866-x

A Note on a Non-isothermal Model for Superconductivity

Jishan Fan, Lulu Jing, Gen Nakamura and Tong Tang
Bulletin of the Malaysian Mathematical Sciences Society 43 (4) 3027 (2020)
https://doi.org/10.1007/s40840-019-00852-3

Regularity criteria for a Ginzburg‐Landau‐Navier‐Stokes in superfluidity in Rn

Jishan Fan, Yasuhide Fukumoto and Yong Zhou
Mathematical Methods in the Applied Sciences 43 (10) 6542 (2020)
https://doi.org/10.1002/mma.6397

Existence and uniqueness for a Ginzburg-Landau system for superconductivity

Jishan Fan and  Yong Zhou
Electronic Journal of Differential Equations 2020 (01-132) (2020)
https://doi.org/10.58997/ejde.2020.17

A regularity criterion to the time-dependent Ginzburg-Landau model for superconductivity in Rn

Jishan Fan and Yong Zhou
Journal of Mathematical Analysis and Applications 483 (2) 123653 (2020)
https://doi.org/10.1016/j.jmaa.2019.123653

Uniform regularity for a 3D time-dependent Ginzburg–Landau model in superconductivity

Jishan Fan, Bessem Samet and Yong Zhou
Computers & Mathematics with Applications 75 (9) 3244 (2018)
https://doi.org/10.1016/j.camwa.2018.01.044

Weak solutions to the Ginzburg–Landau model in superconductivity with the Coulomb gauge

Min Xiao, Jishan Fan and Guoxi Ni
Mathematical Methods in the Applied Sciences 40 (8) 2872 (2017)
https://doi.org/10.1002/mma.4203

New Trends in Analysis and Interdisciplinary Applications

Jishan Fan and Tohru Ozawa
Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications 301 (2017)
https://doi.org/10.1007/978-3-319-48812-7_38

Global existence and uniqueness of weak solutions in critical spaces for a mathematical model in superfluidity

Jishan Fan and Guoxi Ni
Mathematical Methods in the Applied Sciences 38 (8) 1673 (2015)
https://doi.org/10.1002/mma.3180

Convergence of linearized backward Euler–Galerkin finite element methods for the time-dependent Ginzburg–Landau equations with temporal gauge

Chaoxia Yang
International Journal of Computer Mathematics 91 (7) 1507 (2014)
https://doi.org/10.1080/00207160.2013.847929

A linearized Crank–Nicolson–Galerkin FEM for the time‐dependent Ginzburg–Landau equations under the temporal gauge

Chaoxia Yang
Numerical Methods for Partial Differential Equations 30 (4) 1279 (2014)
https://doi.org/10.1002/num.21869

Global existence of strong solutions to a time‐dependent 3D Ginzburg‐Landau model for superconductivity with partial viscous terms

Jishan Fan and Tohru Ozawa
Mathematische Nachrichten 286 (17-18) 1792 (2013)
https://doi.org/10.1002/mana.201200050

Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity

Jishan Fan and Tohru Ozawa
Zeitschrift für angewandte Mathematik und Physik 63 (3) 453 (2012)
https://doi.org/10.1007/s00033-011-0164-x

Uniqueness of weak solutions in critical space of the 3‐D time‐dependent Ginzburg‐Landau equations for superconductivity

Jishan Fan and Hongjun Gao
Mathematische Nachrichten 283 (8) 1134 (2010)
https://doi.org/10.1002/mana.200710083

Uniqueness of weak solutions of time-dependent 3-D Ginzburg-Landau model for superconductivity

Jishan Fan and Hongjun Gao
Frontiers of Mathematics in China 2 (2) 183 (2007)
https://doi.org/10.1007/s11464-007-0013-6