Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A novel discontinuous Galerkin projection scheme for the hydrodynamics of nematic liquid crystals

Zhihui Zheng, Guang-an Zou and Bo Wang
Communications in Nonlinear Science and Numerical Simulation 137 108163 (2024)
https://doi.org/10.1016/j.cnsns.2024.108163

The Second-Order Numerical Approximation for a Modified Ericksen–Leslie Model

Cheng Liao, Danxia Wang and Haifeng Zhang
Mathematics 12 (5) 672 (2024)
https://doi.org/10.3390/math12050672

Error estimates of a sphere-constraint-preserving numerical scheme for Ericksen-Leslie system with variable density

Danxia Wang, Fang Liu, Hongen Jia and Jianwen Zhang
Discrete and Continuous Dynamical Systems - B 28 (11) 5814 (2023)
https://doi.org/10.3934/dcdsb.2023079

An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows

Guang-an Zou, Xuyang Wang and Jian Li
Advances in Computational Mathematics 49 (3) (2023)
https://doi.org/10.1007/s10444-023-10028-0

A stabilized divergence-free virtual element scheme for the nematic liquid crystal flows

Xuyang Wang, Guang-an Zou and Bo Wang
Applied Numerical Mathematics 192 104 (2023)
https://doi.org/10.1016/j.apnum.2023.06.004

A second-order BDF convex splitting numerical scheme for the Ericksen-Leslie equation

Ni Miao, Danxia Wang, Haifeng Zhang and Jing Liu
Numerical Algorithms 94 (1) 293 (2023)
https://doi.org/10.1007/s11075-023-01501-4

A fully-decoupled discontinuous Galerkin method for the nematic liquid crystal flows with SAV approach

Zhihui Zheng, Guang-an Zou, Bo Wang and Wenju Zhao
Journal of Computational and Applied Mathematics 429 115207 (2023)
https://doi.org/10.1016/j.cam.2023.115207

Fully decoupled linear BDF2 scheme for the penalty incompressible Ericksen–Leslie equations

Xin Zhang, Danxia Wang, Jianwen Zhang and Hongen Jia
Mathematics and Computers in Simulation 212 249 (2023)
https://doi.org/10.1016/j.matcom.2023.05.001

A Finite Element Approximation for Nematic Liquid Crystal Flow with Stretching Effect Based on Nonincremental Pressure-Correction Method

Zhaoxia Meng, Meng Liu and Hongen Jia
Entropy 24 (12) 1844 (2022)
https://doi.org/10.3390/e24121844

Viscoelastic Cahn–Hilliard models for tumor growth

Harald Garcke, Balázs Kovács and Dennis Trautwein
Mathematical Models and Methods in Applied Sciences 32 (13) 2673 (2022)
https://doi.org/10.1142/S0218202522500634

Longtime behavior of a second order finite element scheme simulating the kinematic effects in liquid crystal dynamics

Mouhamadou Samsidy Goudiaby, Ababacar Diagne and Leon Matar Tine
Communications on Pure & Applied Analysis 20 (10) 3499 (2021)
https://doi.org/10.3934/cpaa.2021116

Geometric Partial Differential Equations - Part II

Juan Pablo Borthagaray and Shawn W. Walker
Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part II 22 313 (2021)
https://doi.org/10.1016/bs.hna.2020.09.001

A structure-preserving FEM for the uniaxially constrained $$\mathbf{Q}$$-tensor model of nematic liquid crystals

Juan Pablo Borthagaray, Ricardo H. Nochetto and Shawn W. Walker
Numerische Mathematik 145 (4) 837 (2020)
https://doi.org/10.1007/s00211-020-01133-z

A domain decomposition approach to accelerate simulations of structure preserving nematic liquid crystal models

Sylver Carter, Amit Rotem and Shawn W. Walker
Journal of Non-Newtonian Fluid Mechanics 283 104335 (2020)
https://doi.org/10.1016/j.jnnfm.2020.104335

Optimal Error Estimates of Semi-implicit Galerkin Method for Time-Dependent Nematic Liquid Crystal Flows

Rong An and Jian Su
Journal of Scientific Computing 74 (2) 979 (2018)
https://doi.org/10.1007/s10915-017-0479-7

On convergent schemes for two-phase flow of dilute polymeric solutions

Stefan Metzger
ESAIM: Mathematical Modelling and Numerical Analysis 52 (6) 2357 (2018)
https://doi.org/10.1051/m2an/2018042

The Ericksen model of liquid crystals with colloidal and electric effects

Ricardo H. Nochetto, Shawn W. Walker and Wujun Zhang
Journal of Computational Physics 352 568 (2018)
https://doi.org/10.1016/j.jcp.2017.09.035

A projection‐based time‐splitting algorithm for approximating nematic liquid crystal flows with stretching

Roberto C. Cabrales, Francisco Guillén‐González and Juan Vicente Gutiérrez‐Santacreu
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 97 (10) 1204 (2017)
https://doi.org/10.1002/zamm.201600247

Inf-Sup Stable Finite Element Methods for the Landau--Lifshitz--Gilbert and Harmonic Map Heat Flow Equations

Juan Vicente Gutiérrez-Santacreu and Marco Restelli
SIAM Journal on Numerical Analysis 55 (6) 2565 (2017)
https://doi.org/10.1137/17M1116799

A Finite Element Method for Nematic Liquid Crystals with Variable Degree of Orientation

Ricardo H. Nochetto, Shawn W. Walker and Wujun Zhang
SIAM Journal on Numerical Analysis 55 (3) 1357 (2017)
https://doi.org/10.1137/15M103844X

Numerics for Liquid Crystals with Variable Degree of Orientation

Ricardo H. Nochetto, Shawn W. Walker and Wujun Zhang
MRS Proceedings 1753 (2015)
https://doi.org/10.1557/opl.2015.159

A Time-Splitting Finite-Element Stable Approximation for the Ericksen--Leslie Equations

R. C. Cabrales, F. Guillén-González and J. V. Gutiérrez-Santacreu
SIAM Journal on Scientific Computing 37 (2) B261 (2015)
https://doi.org/10.1137/140960979

A Splitting in Time Scheme and Augmented Lagrangian Method for a Nematic Liquid Crystal Problem

F. Guillén-González and J. Koko
Journal of Scientific Computing 65 (3) 1129 (2015)
https://doi.org/10.1007/s10915-015-0002-y

Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models

G. Tierra and F. Guillén-González
Archives of Computational Methods in Engineering 22 (2) 269 (2015)
https://doi.org/10.1007/s11831-014-9112-1