Free Access
Volume 47, Number 5, September-October 2013
Page(s) 1433 - 1464
Published online 30 July 2013
  1. F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Azérad and F. Guillen-González, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33 (2001) 847–859. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericksen–Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46 (2008) 1704–1731. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Climent-Ezquerra, F. Guillén-González and M. Rojas-Medar, Reproductivity for a nematic liquid crystal model. Z. Angew. Math. Phys. (2006) 984–998. [Google Scholar]
  5. Y.M. Chen, The weak solutions to the evolution problems of harmonic maps. Math. Z. 201 (1989) 69–74. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.G. Ciarlet, The finite element method for elliptic problems. Amsterdam, North-Holland (1987). [Google Scholar]
  7. J.J. Douglas, T. Dupont and L. Wahlbin, The stability in Lq of the L2-projection into finite element function spaces. Numer. Math. 23 (1974/75) 193–197. [Google Scholar]
  8. V. Girault and F. Guillén-González, Mixed formulation, approximation and decoupling algorithm for a nematic liquid crystals model. Math. Comput. 80 (2011) 781–819. [CrossRef] [Google Scholar]
  9. V. Girault, N. Nochetto and R. Scott, Estimates of the finite element Stokes projection in W1,∞. C. R. Math. Acad. Sci. Paris 338 (2004) 957–962. [CrossRef] [MathSciNet] [Google Scholar]
  10. V. Girault and J.L. Lions, Two-grid finite-element schemes for the transient Navier–Stokes problem. ESAIM: M2AN 35 (2001) 945–980. [CrossRef] [EDP Sciences] [Google Scholar]
  11. V. Girault and P.A. Raviart. Finite element methods for Navier–Stokes equations: theory and algorithms. Springer-Verlag, Berlin (1986). [Google Scholar]
  12. F. Guillén-González and J.V. Gutiérrez-Santacreu, Unconditional stability and convergence of a fully discrete scheme for 2D viscous fluids models with mass diffusion. Math. Comput. 77 (2008) 1495–1524. [CrossRef] [MathSciNet] [Google Scholar]
  13. F.H. Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Comm. Pure Appl. Math. 42 (1989) 789–814. [CrossRef] [Google Scholar]
  14. F.H. Lin and C. Liu, Non-parabolic dissipative systems modelling the flow of liquid crystals. Comm. Pure Appl. Math. 48 (1995) 501–537. [CrossRef] [Google Scholar]
  15. F. H. Lin and C. Liu, Existence of solutions for the Ericksen–Leslie system. Arch. Rational. Mech. Anal. 154 (2000) 135–156. [CrossRef] [Google Scholar]
  16. P. Lin and C. Liu, Simulations of singularity dynamics in liquid crystal flows: A C0 finite element approach. J. Comput. Phys. 215 (2006) 1411–1427. [Google Scholar]
  17. P. Lin, C. Liu and H. Zhang, An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal flow dynamics. J. Comput. Phys. 227 (2007) 348–362. [Google Scholar]
  18. C. Liu and N.J. Walkington, Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725–741. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Liu and N.J. Walkington, Mixed methods for the approximation of liquid crystal flows. ESAIM: M2AN 36 (2002) 205–222. [CrossRef] [EDP Sciences] [Google Scholar]
  20. A.J. Majda and A.L. Bertozzi, Vorticity and incompressible flows. Cambridge Texts in Applied Mathematics (2002). [Google Scholar]
  21. L. R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  22. J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Cont. Dyn. Sys. 28 (2010) 1669–1691. [Google Scholar]
  23. J. Simon, Compact sets in the Space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–97. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you