Issue |
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
|
|
---|---|---|
Page(s) | 1433 - 1464 | |
DOI | https://doi.org/10.1051/m2an/2013076 | |
Published online | 30 July 2013 |
A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model∗
1 Dpto. E.D.A.N., University of
Sevilla, Aptdo. 1160, 41080
Sevilla,
Spain.
.
guillen@us.es
2 Dpto. Matemática Aplicada I,
University of Sevilla, Av. Reina
Mercedes s/n, 41012
Sevilla,
Spain.
.
juanvi@us.es
Received:
29
July
2011
Revised:
22
February
2013
In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem is showed when the discrete parameters (in time and space) and the penalty parameter go to zero at the same time. Finally, we will show some numerical experiences for a phenomenon of annihilation of singularities.
Mathematics Subject Classification: 35Q35 / 65M12 / 65M60
Key words: Liquid crystal / Navier–Stokes / stability / convergence / finite elements / penalization
© EDP Sciences, SMAI, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.