Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Anisotropic Adaptive Finite Elements for an Elliptic Problem with Strongly Varying Diffusion Coefficient

Samuel Dubuis, Paride Passelli and Marco Picasso
Computational Methods in Applied Mathematics 22 (3) 529 (2022)
https://doi.org/10.1515/cmam-2022-0036

Anisotropic Mesh Refinement Considering a Recovery-Based Error Estimator and Metric Tensors

Jucélio Tomás Pereira and Jéderson da Silva
Arabian Journal for Science and Engineering 44 (6) 5613 (2019)
https://doi.org/10.1007/s13369-018-3674-4

Robust a Posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients on Anisotropic Meshes

Jikun Zhao, Shaochun Chen, Bei Zhang and Shipeng Mao
Journal of Scientific Computing 64 (2) 368 (2015)
https://doi.org/10.1007/s10915-014-9937-7

On the superconvergence patch recovery techniques for the linear finite element approximation on anisotropic meshes

Weiming Cao
Journal of Computational and Applied Mathematics 265 33 (2014)
https://doi.org/10.1016/j.cam.2013.09.031

Robust a posteriori error estimates for conforming discretizations of a singularly perturbed reaction-diffusion problem on anisotropic meshes

Jikun Zhao and Shaochun Chen
Advances in Computational Mathematics 40 (4) 797 (2014)
https://doi.org/10.1007/s10444-013-9327-y

A posteriori error estimation based on conservative flux reconstruction for nonconforming finite element approximations to a singularly perturbed reaction–diffusion problem on anisotropic meshes

Bei Zhang, Shaochun Chen and Jikun Zhao
Applied Mathematics and Computation 232 1062 (2014)
https://doi.org/10.1016/j.amc.2014.01.145

Strategies involving the local defect correction multi-level refinement method for solving three-dimensional linear elastic problems

L. Barbié, I. Ramière and F. Lebon
Computers & Structures 130 73 (2014)
https://doi.org/10.1016/j.compstruc.2013.10.008

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 173 (2013)
https://doi.org/10.1007/978-3-642-33789-5_6

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 195 (2013)
https://doi.org/10.1007/978-3-642-33789-5_7

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 127 (2013)
https://doi.org/10.1007/978-3-642-33789-5_4

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 215 (2013)
https://doi.org/10.1007/978-3-642-33789-5_8

Retrieving Topological Information of Implicitly Represented Diffuse Interfaces with Adaptive Finite Element Discretization

Jian Zhang and Qiang Du
Communications in Computational Physics 13 (5) 1209 (2013)
https://doi.org/10.4208/cicp.261211.290612a

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 1 (2013)
https://doi.org/10.1007/978-3-642-33789-5_1

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 53 (2013)
https://doi.org/10.1007/978-3-642-33789-5_3

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 241 (2013)
https://doi.org/10.1007/978-3-642-33789-5_9

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 19 (2013)
https://doi.org/10.1007/978-3-642-33789-5_2

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 151 (2013)
https://doi.org/10.1007/978-3-642-33789-5_5

An Anisotropic Error Estimator for the Crank–Nicolson Method: Application to a Parabolic Problem

Alexei Lozinski, Marco Picasso and Virabouth Prachittham
SIAM Journal on Scientific Computing 31 (4) 2757 (2009)
https://doi.org/10.1137/080715135

On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows

Y. Bourgault, M. Picasso, F. Alauzet and A. Loseille
International Journal for Numerical Methods in Fluids 59 (1) 47 (2009)
https://doi.org/10.1002/fld.1797

Multiscale algorithm with patches of finite elements

Marco Picasso, Jacques Rappaz and Vittoria Rezzonico
Communications in Numerical Methods in Engineering 24 (6) 477 (2008)
https://doi.org/10.1002/cnm.1019

Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives

M. Picasso
Computer Methods in Applied Mechanics and Engineering 196 (1-3) 14 (2006)
https://doi.org/10.1016/j.cma.2005.11.018

A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems

Serge Nicaise
SIAM Journal on Numerical Analysis 44 (3) 949 (2006)
https://doi.org/10.1137/040611483