Issue |
ESAIM: M2AN
Volume 33, Number 1, January Fabruary 1999
|
|
---|---|---|
Page(s) | 129 - 156 | |
DOI | https://doi.org/10.1051/m2an:1999109 | |
Published online | 15 August 2002 |
Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate
UMPA-ENS Lyon,
46, allée d'Italie,
69364 Lyon Cedex 7, France.
Received:
18
December
1996
Revised:
24
November
1997
In this paper, we study some finite volume schemes for the nonlinear
hyperbolic equation with the initial condition
. Passing to the limit in these schemes, we prove the existence
of an entropy solution
. Proving also uniqueness, we obtain
the convergence of the finite
volume approximation to the entropy solution in
,
1 ≤ p ≤ +∞.
Furthermore, if
, we show that
, which leads to an
“
” error estimate between the approximate and the entropy
solutions (where h defines the size of the mesh).
Résumé
Dans cet article, on étudie des schémas volumes finis pour l'équation hyperbolique
non linéaire , avec comme condition initiale
.
En passant à la limite dans ces schémas numériques, on obtient l'existence d'une solution entropique
, puis son unicité. On montre aussi la convergence dans
,
(1 ≤ p ≤ +∞) de la solution approchée donnée par le schéma vers la solution entropique.
De plus, si
, on prouve que
, ce qui implique
une estimation d'erreur de l'ordre de
entre solution approchée et solution entropique (h
étant le pas du maillage).
Mathematics Subject Classification: 65M60 / 35L65 / 65M12 / 65M15
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.