Issue |
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
|
|
---|---|---|
Page(s) | 419 - 437 | |
DOI | https://doi.org/10.1051/m2an:2000149 | |
Published online | 15 April 2002 |
Structural Evolution of the Taylor Vortices
1
Department of Mathematics, Sichuan University,
Chengdu, P.R. China.
2
Department of Mathematics, Indiana University, Bloomington, IN 47405. email: showang@indiana.edu
Received:
17
September
1999
Revised:
14
December
1999
We classify in this article the structure and its transitions/evolution of the Taylor vortices with perturbations in one of the following categories: a) the Hamiltonian vector fields, b) the divergence-free vector fields, and c). the solutions of the Navier-Stokes equations on the two-dimensional torus. This is part of a project oriented toward to developing a geometric theory of incompressible fluid flows in the physical spaces.
Résumé
Dans cet article, nous classons la structure et les transitions/évolutions des vortex de Taylor avec perturbations dans l'une des catégories suivantes : a) champs de vecteurs hamiltoniens, b) champs de vecteurs à divergence nulle, et c) solutions des équations de Navier-Stokes sur le tore bi-dimensionnel. Cette partie du projet est orientée vers une théorie géométrique des écoulements de fluides incompressibles dans l'espace physique.
Mathematics Subject Classification: 34D / 35Q35 / 58F / 76
Key words: Divergence-free vector fields / Hamiltonian vector fields / Taylor vortices / Navier-Stokes equations / block structure / block structural stability / structural evolution.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.