Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 419 - 437
DOI https://doi.org/10.1051/m2an:2000149
Published online 15 April 2002
  1. R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley: Reading, MA (1978). [Google Scholar]
  2. D.V. Anosov and V. Arnold, Dynamical Systems I, Springer-Verlag, New York, Heidelberg, Berlin (1985). [Google Scholar]
  3. V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, Heidelberg, Berlin (1978). [Google Scholar]
  4. Alain Bensoussan, Jacques-Louis Lions and Papanicolaou George, Asymptotic analysis for periodic structures, Ser. Studies in Mathematics and its Applications. 5; North-Holland Publishing Co., Amsterdam (1978) 700. [Google Scholar]
  5. D. Chillingworth, Differential topology with a view to applications. Pitman, London, San Francisco, Melbourne. Research Notes in Mathematics, 9 (1976). [Google Scholar]
  6. A. Chorin, Vorticity and Turbulence, Springer-Verlag (1994). [Google Scholar]
  7. P. Constantin and C. Foias, The Navier-Stokes Equations, Univ. of Chicago Press, Chicago (1988). [Google Scholar]
  8. L. Caffarelli and R. Kohn and L. Nirenberg, On the regularity of the solutions of Navier-Stokes Equations. Comm. Pure Appl. Math. 35 (1982) 771-831. [CrossRef] [MathSciNet] [Google Scholar]
  9. Strebel, Kurt, Quadratic differentials, Springer-Verlag, Berlin (1984) 184. [Google Scholar]
  10. A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces. Asterisque 66-67 (1979). [Google Scholar]
  11. A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 (1994) 333-408. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. Hopf, Abbildungsklassen n-dimensionaler mannigfaltigkeiten. Math. Annalen 96 (1926) 225-250. [CrossRef] [Google Scholar]
  13. D. Gottlieb, Vector fields and classical theorems of topology. Rendiconti del Seminario Matematico e Fisico, Milano 60 (1990) 193-203. [Google Scholar]
  14. J. Milnor, Topology from the differentiable viewpoint. University Press of Virginia, based on notes by D.W. Weaver, Charlottseville (1965). [Google Scholar]
  15. J. Guckenheimer and P.J. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, Heidelberg, Berlin (1983). [Google Scholar]
  16. J.K. Hale, Ordinary differential equations, Robert E. Krieger Publishing Company, Malabar, Florida (1969). [Google Scholar]
  17. M.W. Hirsch, Differential topology, Springer-Verlag, New York, Heidelberg, Berlin (1976). [Google Scholar]
  18. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969). [Google Scholar]
  19. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1995). [Google Scholar]
  20. J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que posent l'hydrodynamique. J. Math. Pures et Appl. XII (1933) 1-82. [Google Scholar]
  21. J.L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992) 237-288. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.L. Lions, R. Temam and S. Wang, On the Equations of Large-Scale Ocean. Nonlinearity 5 (1992) 1007-1053. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.L. Lions, R. Temam and S. Wang, Models of the coupled atmosphere and ocean (CAO I). Computational Mechanics Advance, 1 (1993) 3-54. [Google Scholar]
  24. J.L. Lions, R. Temam and S. Wang, Geostrophic Asymptotics of the Primitive Equations of the Atmosphere. Topological Methods in Nonlinear Analysis 4; note "Special issue dedicated to J. Leray" (1994) 253-287. [Google Scholar]
  25. J.L. Lions, R. Temam and S. Wang, Mathematical study of the coupled models of atmosphere and ocean (CAO III). J. Math. Pures Appl. 73 (1995) 105-163. [Google Scholar]
  26. J.L. Lions, R. Temam and S. Wang, A Simple Global Model for the General Circulation of the Atmosphere, "Dedicated to Peter D. Lax and Louis Nirenberg on the occasion of their 70th birthdays''. Comm. Pure. Appl. Math. 50 (1997) 707-752. [CrossRef] [MathSciNet] [Google Scholar]
  27. P.L. Lions, Mathematical Topics in Fluid Mechanics, Oxford science Publications (1996). [Google Scholar]
  28. A. Majda, Vorticity and the mathematical theory of incompressible fluid flow. Frontiers of the mathematical sciences: 1985 (New York). Comm. Pure Appl. Math. 39 (1986) S187-S220. [CrossRef] [Google Scholar]
  29. T. Ma and S. Wang, Dynamics of Incompressible Vector Fields. Appl. Math. Lett. 12 (1999) 39-42. [CrossRef] [MathSciNet] [Google Scholar]
  30. T. Ma and S. Wang, Dynamics of 2-D Incompressible Flows. Proceedings of the International Conferences on Differential Equations and Computation (1999). [Google Scholar]
  31. T. Ma and S. Wang, The Geometry of the Stream Lines of Steady States of the Navier-Stokes Equations. Contemporary Mathematics, AMS 238 (1999) 193-202. [Google Scholar]
  32. T. Ma and S. Wang, Block structure and stability of 2-D Incompressible Flows (in preparation, 1999). [Google Scholar]
  33. T. Ma and S. Wang, Structural classification and stability of divergence-free vector fields. Nonlinearity (revised, 1999). [Google Scholar]
  34. A. Majda, The interaction of nonlinear analysis and modern applied mathematics. Proc. Internat. Congress Math., Kyoto, 1990, Springer-Verlag, New York, Heidelberg, Berlin (1991) Vol. 1. [Google Scholar]
  35. N. Markley, The Poincaré-Bendixson theorem for Klein bottle. Trans. AMS 135 (1969). [Google Scholar]
  36. L. Markus and R. Meyer, Generic Hamiltonian systems are neither integrable nor ergodic. Memoirs of the American Mathematical Society 144 (1974). [Google Scholar]
  37. J. Moser, Stable and Random Motions in Dynamical Systems. Ann. Math. Stud. No. 77. Princeton (1973). [Google Scholar]
  38. J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York, Heidelberg, Berlin (1982). [Google Scholar]
  39. J. Palis and S. Smale, Structural stability theorem. Global Analysis. Proc. Symp. in Pure Math. XIV (1970). [Google Scholar]
  40. M. Peixoto, Structural stability on two dimensional manifolds. Topology 1 (1962) 101-120. [CrossRef] [MathSciNet] [Google Scholar]
  41. C. Pugh, The closing lemma. Amer. J. Math. 89 (1967) 956-1009. [CrossRef] [MathSciNet] [Google Scholar]
  42. Shub, Michael, Stabilité globale des systèmes dynamiques. Société Mathématique de France. Note With an English preface and summary. Astérisque 56 (1978) iv+211. [Google Scholar]
  43. C. Robinson, Generic properties of conservative systems, I, II. Amer. J. Math. 92 (1970) 562-603 and 897-906. [Google Scholar]
  44. C. Robinson, Structure stability of vector fields. Ann. of Math. 99 (1974) 154-175. [CrossRef] [MathSciNet] [Google Scholar]
  45. C. Robinson, Structure stability of C1 diffeomorphisms. J. Differential Equations 22 (1976) 28-73. [CrossRef] [MathSciNet] [Google Scholar]
  46. G. Schwartz, Hodge decomposition-A method for solving boundary value problems. Lecture Notes in Mathematics 1607 Springer-Verlag (1995). [Google Scholar]
  47. S. Smale, Differential dynamical systems. Bull. AMS 73 (1967) 747-817. [CrossRef] [MathSciNet] [Google Scholar]
  48. F. Takens, Hamiltonian systems: generic properties of closed orbits and local perturbations. Math. Ann. 188 (1970) 304-312. [CrossRef] [MathSciNet] [Google Scholar]
  49. G.I. Taylor, Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. A 223 (1923) 289-343. [NASA ADS] [CrossRef] [Google Scholar]
  50. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd edition, North Holland, Amsterdam (1984). [Google Scholar]
  51. R. Thom, Structural Stability and Morphogenesis, Benjamin-Addison Wesley (1975). [Google Scholar]
  52. W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19 (1988) 417-431. [CrossRef] [MathSciNet] [Google Scholar]
  53. V. Trofimov, Introduction to Geometry on Manifolds with Symmetry, MIA Kluwer Academic Publishers (1994). [Google Scholar]
  54. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, Heidelberg, Berlin (1990). [Google Scholar]
  55. J.C. Yoccoz, Recent developments in dynamics, in Proc. Internat. Congress Math., Zurich (1994), Birkhauser Verlag, Basel, Boston, Berlin (1994) 246-265 Vol. 1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you